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Finite-temperature local dynamical spin correlations Snnð!Þ are studied numerically within the random

spin-1=2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation

times in BaCu2ðSi0:5Ge0:5Þ2O7, which is the realization of a random spin chain. In agreement with

experiments we find that the distribution of relaxation times within the model shows a very large span

similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays

finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random

singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin

anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not

find any significant T dependence of the distribution.
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One-dimensional (1D) quantum spin systems with ran-
dom exchange couplings reveal interesting phenomena
fundamentally different from the behavior of ordered
chains. Since the seminal studies of antiferromagnetic
(AFM) random Heisenberg chains (RHCs) by Dasgupta
and Ma [1,2] using the renormalization-group approach
and further development by Fisher [3], it has been recog-
nized that the quenched disorder of exchange couplings J
leads at lowest energies to the formation of random singlets
with vanishing effective ~J at large distances. The conse-
quence for the uniform static susceptibility �0 is the sin-
gular Curie-type temperature (T) dependence, dominated
by nearly uncoupled spins at low T and confirmed by
numerical studies of model systems [4], as well as by
measurements of �0ðTÞ on the class of materials being
the realizations of RHC physics, in particular the mixed
system BaCu2ðSi1�xGexÞ2O7 [5–7].

Recent measurements of NMR spin-lattice relaxation
times T1 in BaCu2ðSi0:5Ge0:5Þ2O7 [6] reveal a broad distri-
bution of different T1 resulting in a nonexponential mag-
netization decay being rather of a stretched-exponential
form. In connection to this, the most remarkable is the
strong T dependence of the T1 span becoming progres-
sively large and the corresponding distribution non-
Gaussian at low T. It is evident that in a random system
T1, which is predominantly testing the local spin correla-
tion function Snnð! ! 0Þ, becomes site n dependent and
we are therefore dealing with the distribution of T1n lead-
ing to a nonexponential magnetization decay.

Theoretically the behavior of dynamical spin correla-
tions in RHCs has not been adequately addressed so far.
There is (to our knowledge) no established model result
and moreover no clear prediction for the behavior of
dynamical (! � 0) spin correlations at T > 0 in RHCs.
It seems plausible that the low-T behavior should follow
from the random-singlet concept and its scaling properties,

discussed within the framework of the renormalization-
group approaches [2,3,8,9]. Still, the relation to singular
static correlations as evidenced, e.g., by �0ðTÞ diverging at
T ! 0, and low-! dynamical correlations is far from clear.
One open question is also the qualitative similarity to the

behavior of the random anisotropic XX chain invoked in
several studies [4,8–10]. The latter system is equivalent to
the more elaborated problem of noninteracting (NI) spin-
less fermions with the off-diagonal (hopping) disorder
[11,12].
In the following we present results for the dynamical

local spin correlation function Snnð!Þ, in particular for its
limit s ¼ Snnð! ! 0Þ relevant for the NMR T1, within the
AFM RHC model for T > 0, obtained using the numerical
method based on the density-matrix renormalization group
(DMRG) approach [13]. At high T � J, distribution of s
reveals a modest but finite width qualitatively similar both
for the isotropic and the XX chain. On the other hand, the
low-T variation established numerically is essentially dif-
ferent. While for the XX chain there is no significant T
dependence, results for the isotropic case reveal at low
T � J a very large span of s values and corresponding
T1n, qualitatively and even quantitatively consistent with
NMR experiments [6].
We study in the following the 1D spin-1=2 model rep-

resenting the AFM RHC,

H ¼ X
i

JiðSxi Sxiþ1 þ Syi S
y
iþ1 þ �SziS

z
iþ1Þ; (1)

where Ji are random and we will assume their distribution
as uncorrelated and uniform in the interval J � �J � Ji �
J þ �J, with the width �J < J as the parameter. In
the following we will consider predominantly the isotropic
case � ¼ 1, but as well the anisotropic XX case with
� ¼ 0. The chain is of the length L with open boundary

PRL 111, 147203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 OCTOBER 2013

0031-9007=13=111(14)=147203(5) 147203-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.147203


conditions as useful for the DMRG method. We further on
use J ¼ 1 as the unit of energy as well as @ ¼ kB ¼ 1.

Our aim is to analyze the local spin dynamics in
connection with the NMR spin-lattice relaxation [6]. In a
homogeneous system the corresponding relaxation rate
1=T1 is expressed in terms of the q-dependent spin corre-
lation function,

1

T1

¼ X
q�

A2
�ðqÞS��ðq;! ! 0Þ; (2)

where A2
�ðqÞ involve hyperfine interactions and NMR form

factors [6]. In the Supplemental Material [14] we show that
the dominant dynamical ! ! 0 contribution at low T is
coming from the regime q� �. Therefore the variation
A2
�ðqÞ is not essential and the rate depends only on the local

spin correlation function 1=T1 / Szzlocð! ! 0Þ. In a system

with quenched disorder the relaxation time becomes site
dependent, i.e., T1n; hence, we study in the following the
local correlations Snnð!Þ and the distribution of local limits
s ¼ Snnð! ! 0Þ and related relaxation times � ¼ 1=s
where

Snnð!Þ ¼ 1

�
Re

Z 1

0
dte�!thSznðtÞSznð0Þi: (3)

In order to reduce finite-size effects we study large
systems employing the finite-temperature dynamical
DMRG (FTD-DMRG) [13,15,16] method to evaluate the
dynamical Snnð!Þ, Eq. (3). To reduce edge effects we
choose the local site n to be in the middle of the chain, n ¼
L=2. The distribution of s is then calculated with Nr � 103

different realizations of the system with random Ji. More
technical detail on the calculation can be found in the
Supplemental Material [14].

We start the presentation of the results with typical
examples of Snnð!Þ. In Fig. 1 we show calculated spectra
for a system with L ¼ 80 sites, T ¼ 0:5, � ¼ 1, and three
different realizations of Ji, i.e., the homogeneous system
with Ji ¼ 1 and two configurations with �J ¼ 0:7. Spectra

for the uniform system are broad and regular at !� 0,
agreeing with those obtained with other methods [17],
while Snnð!Þ for random case strongly depend apart
from �J also on the local Ji, i� n. In particular, spectra
with both Jn�1 and Jn small have a large amplitude at the
relevant !� 0, while spectra with one large Jn�1 or Jn
have most of the weight at high-! and a small amplitude at
!� 0 (elaborated further in the conclusions). For the
following analysis it is important that s ¼ Snnð! ! 0Þ
can be extracted reliably.
Results for T � J.—Before displaying results for the

most interesting T < J regime, we note that even at T �
J one cannot expect a well-defined � ¼ �0 but rather a
distribution of values. One can understand this by studying
analytically local frequency moments within the high-T
expansion and using Mori’s continued fraction representa-
tion [18] with the Gaussian-type truncation level of l > 3
[19,20] (see [14] for more details). In the inset of Fig. 2 we
present the high-T result for the probability distribution
function of s PDFðsÞ and compare it with the numerical
results evaluated for T ¼ 1. Several conclusions can be
drawn from the results presented in Fig. 2. (a) The agree-
ment of PDFðsÞ obtained via the analytical approach
and numerical FTD-DMRG method is satisfactory having
the origin in quite broad and featureless spectra Snnð!Þ at
T � J. Still we note that median values of s (smed) differ
between both approaches and that for T � J (unlike
T � J) contribution of q ! 0 can become essential
[14,21]. (b) PDFðsÞ becomes quite asymmetric and broad
for �J � 0:5. (c) Consequently, also the distribution of
local relaxation times PDFð�Þ has a finite but modest width
for T ! 1. This seems to be in qualitative agreement with
NMR data for BaCu2ðSi0:5Ge0:5Þ2O7, where the width was
hardly detected at high T [6].
Results for T < J.—More challenging is the low-T

regime which we study using the FTD-DMRG method

FIG. 1 (color online). Dynamical local spin correlations
Snnð!Þ for different configurations of Ji. Shown are spectra for
the homogeneous case �J ¼ 0 and two configurations with
�J ¼ 0:7, calculated for T ¼ 0:5 and L ¼ 80 sites.

FIG. 2 (color online). Probability distribution function of local
relaxation rates PDFðsÞ at T � 1 evaluated using the moment
expansion for different �J. Inset: Comparison of the analytical
and FTD-DMRG result for �J ¼ 0:5, L ¼ 20 with a full basis
and averaged over Nr ¼ 103 realizations.
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for typically L ¼ 80 and Nr � 103. Besides the isotropic
case (� ¼ 1), we also investigate for comparison the XX
model (� ¼ 0). As the model of NI fermions with the
off-diagonal disorder [10,11], it can be easily studied via
full diagonalization on much longer chains with L�
16 000. The PDF for T < J can become very broad and
asymmetric. Hence, we rather present results as the cumu-
lative distribution function CDFðxÞ ¼ R

x
0 dyPDFðyÞ.

Further we rescale x values to the median defined as
CDFðxmedÞ ¼ 0:5. Results for CDFðsÞ are presented in
Fig. 3. Note that PDFð�Þ ¼ PDFðsÞ=�2. Panels in Fig. 3
represent results for the isotropic case � ¼ 1with (a) fixed
T ¼ 0:2 and varying �J ¼ 0:1–0:9, while in (b) �J ¼ 0:7
is fixed and T ¼ 0:1–0:5. The inset of Fig. 3(b) displays the
T dependence (for fixed �J ¼ 0:7) of the CDF for the XX
chain.

We first note that within the XX chain CDFðsÞ are
essentially T independent. This appears as quite a contrast
to, e.g., static �0ðTÞ which exhibits a divergence at T ! 0
[4,14]. Results for the isotropic case � ¼ 1 in Figs. 3(a)
and 3(b) are evidently different. The span in the CDF
becomes very large (note the logarithmic scale) either by
increasing �J at fixed T or even more by decreasing T at
fixed �J. From the corresponding PDF one can calculate
the relaxation function RðtÞ ¼ R

dsPDFðsÞe�ts, which is in
fact the quantity measured in the NMR as a time-dependent
magnetization recovery [6]. As in experiment, the large
span in our results for low T can be captured by a stretched
exponential form, RðtÞ � exp½�ðt=�0Þ��, where � and �0

are parameters to be fitted for a particular PDFðsÞ and
corresponding RðtÞ. It is evident that � � 1 means large
deviations from the Gaussian-like form, and in particular
very pronounced tails in the PDFðsÞ, both for s � smed as
well as a singular variation for s ! 0. In the latter regime
1=�0 can deviate substantially from the average of local
1=�. It should be also noted that the stretched exponential
form, is the simplest one capturing the large span of s
values. It is also used in the experimental analysis [6],
but the corresponding PDFðsÞs reveal somewhat enhanced
tails for s > smed relative to calculated ones in Figs. 3(a)
and 3(b), and the opposite trend for s < smed. This suggests
possible improvements and a description beyond the
stretched exponential form, which we leave as a future
challenge. More details can be found in the Supplemental
Material [14].
Results for the fitted exponent �ðTÞ for � ¼ 1 as

extracted from numerical PDFðsÞ for various �J are shown
in Fig. 4(a). They confirm experimental observation [6] of
increasing deviations from simple exponential variation
(� ¼ 1) for T � J. While for T > J, � & 1 for modest
�J < 0:7, low-T values can reach even �< 0:5 at lowest
reachable T < 0:1. Note that in such a case values of s are
distributed over several orders of magnitude.
Of interest for the comparison with experiment is also

the T variation of fitted 1=�0. Results are again essentially
different for� ¼ 0 and � ¼ 1. �0 (as well smed) for � ¼ 0
follows well the Korringa law 1=�0 / T for T < 0:5, as
usual for the system of NI fermions with a constant density
of states (DOS) (divergent DOS at E ! 0 could induce a
logarithmic correction). On the other hand, for the iso-
tropic (� ¼ 1) chain with no randomness �0 ¼ � it should
follow 1=�� const for T < J [17,22]. Similar behavior is

FIG. 3 (color online). Cumulative distribution function of s.
Shown are FTD-DMRG results for � ¼ 1: (a) for fixed T ¼ 0:2
and various �J, (b) for fixed �J ¼ 0:7 and various T � 0:5. Inset
of (b): full diagonalization results for � ¼ 0, �J ¼ 0:7 and
various T.

FIG. 4 (color online). (a) Exponent � vs T obtained from
PDFðsÞ data for different �J and isotropic case � ¼ 1. (b) T
dependence of fitted 1=�0 for � ¼ 1 and different �J.
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observed for weak disorder �J ¼ 0:1 as shown in Fig. 4(b).
However, with increasing randomness �J, 1=�0 becomes
more T dependent and increases with T. Such T depen-
dence in the RHC of 1=�0 is, although in agreement with
experiment, in apparent contrast with diverging �0ðT !
0Þ. This remarkable dichotomy between static and dynami-
cal ! ! 0 behavior can be reconciled by the observation
that in a random system Sðq;!� 0Þ reveals, besides the
regular par, also a delta peak at ! ¼ 0 (not entering 1=T1),
which can be traced back to diagonal matrix elements [14]
being an indication of a nonergodic behavior (at least at
low T). Note that more frequently studied static SðqÞ
(equal-time correlation) [23] represents a sum rule con-
taining both parts. Also, the relation �0ðTÞ ¼ Sðq ¼ 0Þ=T
in spite of divergent �ðT ! 0Þ leads to vanishing Sðq ¼ 0Þ
at T ! 0 only slower than linearly [14,23].

As a partial summary of our results, we comment on the
relation to the experiment on BaCu2ðSi0:5Ge0:5Þ2O7 [5,6].
The spin chain is in this case is assumed to be a random
mixture of two different values Ji ¼ 280 K, 580 K, which
correspond roughly to our �J ’ 0:6 (fixing the same effec-
tive width) and J ¼ 430 K. Taking these values, our results
for �ðTÞ as well as 1=�0ðTÞ agree well with experiment.
In particular we note that at lowest T � J our calculated
�� 0:5 for �J ¼ 0:6 matches the measured one. There
appears to be the discrepancy of a steeper increase of
measured �ðTÞ towards the limiting � ¼ 1 coinciding
with observed very narrow PDFð�Þ which remains of finite
width in our results even for T ! 1 as seen in Fig. 2. As far
as calculated 1=�0ðTÞ vs NMR experiment is concerned, we
note that taken into account, the normalization of average J
disordered system reveals at T ! 0 smaller 1=�0 than a
pure one consistent with the experiment [6]. In agreement
with the experimental analysis is also the strong T variation
of 1=�0 at low T in a disordered system in contrast to a
pure one.

Our results on the local spin relaxation Snnð!Þ and in
particular its T dependence cannot be directly explained
within the framework of existing theoretical studies and
scaling approaches to RHCs [2,3,9]. Our study clearly
shows the qualitative difference in the behavior of the XX
chain and the isotropic RHC. While in the former model
mapped onNI electrons,T does not play any significant role
on PDFðsÞ as seen in the inset of Fig. 3(b), the � ¼ 1 case
shows strong variation with T � J. It is plausible that the
difference comes from the interaction andmany-body char-
acter involved in the isotropic RHC. To account for that we
design, in the following, a simple qualitative argument.

The behavior of Snnð!� 0Þ at low T is dominated by
transitions between low-lying singlet and triplet states
which become in a RHC nearly degenerate following the
scaling arguments with effective coupling ~J ! 0 for more
distant spins and reflected in diverging �0ðT ! 0Þ
[2–4,14]. Such transitions are relevant at the! ! 0 behav-
ior as presented in Fig. 1. Moreover, local Snnð!� 0Þ

exhibit a large spread due to the variations in the local
environment. Let us for simplicity consider the symmetric
Heisenberg model on four sites (with open boundary con-
ditions) with a stronger central bond J2 � J1 ¼ J3 and
J ¼ ðJ1 þ J2 þ J3Þ=3. It is then straightforward to show
that the lowest singlet-triplet splitting is strongly reduced,
i.e., �E / �2J where � ¼ J1=J2. Within the same model
one can also evaluate the ratio between two different
amplitudes of Snnð!��EÞ ¼ Ann�ð!��EÞ, on sites
n ¼ 1, 2 neighboring the weak and strong bond,

1

W
¼ A22

A11

¼ jh�tjSz2j�sij2
jh�tjSz1j�sij2

� �2: (4)

The relation shows that the span between the largest and
smallest amplitudes increases as W / 1=�2 / 1=�E.
Continuing in the same manner the scaling procedure for
a long AFM RHC [2,3] the smallest effective coupling
between further spins ~J vanishes at T ¼ 0 and �E / ~J !
0, so that one expects W ! 1 for T ! 0. On the other
hand, for T > 0 the scaling should be cut off at ~J � T at
least for � ¼ 1, finally leading to the strong WðTÞ depen-
dence (W / 1=T).
In summary, we have reproduced qualitatively main

experimental NMR results on a mixed system
BaCu2ðSi0:5Ge0:5Þ2O7 including anomalously wide distri-
bution of relaxation rates, together with T dependencies of
experimental parameters (1=�0, �) and provided a micro-
scopic explanation with the help of the random-singlet
framework. Our qualitative conclusions on the RHC do
not change by changing Sztot (adding finite field in the
fermionic language) or even reducing �< 1 provided
that �> 0 (see Supplemental Material [14]). We also
comment on the striking difference between static and
dynamic quantities and observed deviations from stretched
exponential phenomenology.
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