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We consider the extended hard-core Bose-Hubbard model on a kagome lattice with boundary
conditions on two edges. We find that the sharp edges lift the degeneracy and freeze the system into a
striped order at 1/3 and 2/3 filling for zero hopping. At small hopping strengths, holes spontaneously
appear and separate into fractional charges which move to the edges of the system. This leads to a novel
edge liquid phase, which is characterized by fractional charges near the edges and a finite edge
compressibility but no superfluid density. The compressibility is due to excitations on the edge which
display a chiral symmetry breaking that is reminiscent of the quantum Hall effect and topological
insulators. Large scale Monte Carlo simulations confirm the analytical considerations.
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Frustrated systems are a rich playground in the search
for new exotic phases and excitations, such as spin liquid
phases [1-4], Dirac strings in a spin ice [5,6], and frac-
tional charges in kagome lattice antiferromagnets [7].
Recently, progress of indirect observations of fractional
excitations has been made [8], but their detection remains
far from trivial since the controlled excitation and separa-
tion of fractional charges is difficult. We now show that,
by introducing sharp edges on two sides of a kagome
lattice with interacting bosons, fractional charges appear
spontaneously and are located close to the separate edges
depending on their chirality. These chiral edge states are
reminiscent of phenomena in quantum Hall physics [9] and
topological insulators [10], but on the kagome lattice the
topology and chirality are completely controlled by the
design of the edges. Moreover, the appearance of the chiral
fractional charges with a deconfined interaction gives rise
to a new compressible quantum edge phase.

Exotic excitations in frustrated systems such as frac-
tional charges and monopoles can often be understood
from rather straightforward geometrical arguments [11].
They appear as local defects in the form of a rearrangement
of real charges on the nontrivial background [6,7,12,13].
When two (or more) fractional charges separate they may
be connected by a string of a slightly disturbed quantum
ground state, which normally acts confining. This poses a
generic problem for the controlled excitation and observa-
tion of the fractional charges: the confining string keeps
them close together so that a separate observation becomes
impossible, analogously to the difficulty of detecting indi-
vidual quarks. If the string can be tuned to become decon-
fining, then the system typically undergoes a quantum
phase transition to a complicated sea of closed strings
with entirely different properties.

In this Letter we show that a controlled separation of
fractional charges is possible using sharp edges in a system
of interacting bosons on a kagome lattice. We find that the
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boundary conditions play an important role due to the
huge degeneracy, and deconfining strings appear, which
separate the fractional charges. The fractional charges
are located near the edges and their internal quantum
number (up and down) is locked to the respective topology
of the edge.

The model is defined by hard-core bosons on a kagome
lattice with nearest neighbor repulsion V and chemical
potential u,

H= =130 +blb) + VYnn; — udn, (1)

Gj) {j) i
where ¢ is the hopping between boson creation and anni-
hilation operators b;r and b; on nearest neighbor sites (i, /).
The kagome lattice is special since it allows a macroscopic
degeneracy even for commensurate fillings of 1/3 and 2/3.
In particular, without hopping the model in Eq. (1) corre-
sponds to the Ising model with an entropy per site [14] of
S = 0.108 at filling 1/3, since all configurations with one
particle per triangle are ground states; i.e., there is a
“triangle rule” analogous to the “ice rule” in the spin
ice [6]. Finite hopping 7 > 0 lifts this degeneracy which
leads to an ordered state with a finite structure factor. At
even larger hopping a phase transition to a superfluid phase
is observed, which is believed to be weakly first order or
possibly second order [15]. At negative hopping t = —V//2
the model corresponds to the Heisenberg model which is at
half filling one of the most promising candidate for a spin
liquid [2].

Fractional charges on the kagome lattice which are
connected by strings have been extensively discussed [7]
for the fermionic model in Eq. (1) at filling 1/3. Basically,
the fractional charges correspond to one empty triangle,
which has two possible chiralities: up or down. Since one
up and one down triangle together correspond to a single
missing charge [see Fig. 1(b)], itis clear that a single empty
triangle has negative fractional bosonic charge —1/2.
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FIG. 1 (color online). (a) Striped order phase induced by
edges. (b) One hole corresponds to two fractional charges (black
triangles). (c) Hopping of real particles (blue dots) separates the
fractional charges and resonant hexagons appear along the con-
necting string (red dots). (d) The spin (red arrows) representation
of the string (green path). () Resonant hexagons can be flipped
by a third order hopping process.

However, so far there is no proposal on how to directly
observe these exotic excitations.

As we will show here, it is possible to make a controlled
separation of the fractional charges by introducing sharp
edges in the model of Eq. (1) on two sides of the kagome
lattice, which also gives rise to a new boundary-induced
quantum edge phase. Interestingly, such edges as depicted
in Fig. 1 have a macroscopic effect in the kagome lattice,
since the edges fix the bosons at the upper corners of the
triangles. Therefore, the order becomes frozen for ¢t = 0
and there is a unique ground state of bosons in stripes
parallel to the edges as shown in Fig. 1(a). In other words,
the macroscopic entropy is lost in this “‘striped order
phase,” even when the edges are very far apart.

In a system with such edges the role of finite but small
hopping ¢ is now dramatically reversed: Instead of lifting
the degeneracy, the hopping now facilitates fluctuations,
which turn out to be nothing other than strings between
fractional charges. As depicted in Fig. 1 the separation of
two fractional charges creates a string with configurations
of triple occupied hexagons. At finite hopping the triple
occupied hexagons are preferred since they lower the
energy by —12£2/V? via a resonant third order hopping
process [15], as shown in Fig. 1(e).

At this point two interesting observations can be made:
First, there is a new competition between a frozen ground
state due to the edges without any resonant hexagons
(striped order phase) on the one hand and possible fluctu-
ating strings on the other hand; second, closed strings
cannot appear by a local rearrangement of charges without
violating the triangle rule on the frozen configuration
shown in Fig. 1(a). Indeed, it is straightforward to convince
oneself that fluctuating strings with triple occupied hexa-
gons can only occur if either the triangle rule is violated or

holes are introduced into the system. For the case u <V
we therefore expect that holes may appear spontaneously
which separate into two fractional charges since the con-
necting strings allow additional resonant hexagons and
therefore are deconfining. However, this phase is not the
superfluid phase since the fractional charges are not free.
Indeed, we will see that the fractional charges only appear
as edge excitations, so we will call this phase the “edge
liquid phase.”

In order to establish the new edge phase quantitatively,
it is important to understand the process of fractional
charge separation in detail as illustrated in Fig. 1. In
Fig. 1(a) the frozen configuration in the striped order is
shown, which is the unique ground state for r = 0. If a
charge is removed [Fig. 1(b)], two fractional charges can
separate for ¢+ # 0, namely, one up and one down triangle
[Fig. 1(c)] which are connected by a string (red dots).
Because of this string, the down triangle can never move
underneath the up triangle. Since there are now resonant
configurations (hexagons with three bosons) along the
string, it is deconfining and the energy can be lowered
by pushing the fractional charges to the upper and lower
edges, respectively. When the energy gain from a fluctu-
ating string exceeds the energy cost u of removing a
charge, it can be expected that fractional charges appear
spontaneously at the edges, leading to a new quantum
edge phase which is compressible.

The energy of a string can in turn be quantitatively
estimated by realizing that in fact the resonances on each
hexagon correspond to fluctuations of the string as shown
in Fig. 1(d). Here the path of the string is mapped to up and
down spins depending on whether the string is to the right
or left of a resonant hexagon. A flip can occur when the
neighboring hexagon has opposite spin, leading to an
xy-type model with effective exchange of —12¢°/V? along
the length of the string Ly = L,:

1208 & o
Hy=-~5 D ($FS7, + He). (@)
i=1

For a given length L the ground state energy of this model
is given by

127
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which means that there can be a substantial energy gain
by maximizing the length L. However, this is only part of
the story since the ends of the string can move freely up to
the total systems size L, = L, due to the hopping of the
fractional charges. This hopping gives an additional kinetic
energy of order ¢ and independent of length, but for large
systems sizes the leading effect of the xy model in Eq. (2) is
to maximize the length of the string L, i.e., push the
fractional charges apart towards the edges by an effective
linear repulsive potential between the fractional charges.
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At the top edge the fractional charges appear as down
triangles only, and at the bottom edge they appear as up
triangles. These edge excitations therefore have a definite
chirality, which relates the pseudospin of the fractional
charge (up or down) to the direction given by the edge.

We now turn to quantum Monte Carlo simulations of the
hard-core boson model in Eq. (1) on the kagome lattice in
order to numerically analyze the existence of the edge
excitations. We use the stochastic cluster series expansion
[16,17] with parallel tempering [18—20] on system sizes up
to 1752 sites (L, = L, = 24) with cylindrical boundary
conditions.

In all extrapolations to the thermodynamic limit, we
use an isotropic 2D geometry of L, = L,. Most of the
simulations were done for an inverse temperature of 8 =
200/V so that quantum fluctuations of the strings always
dominate temperature fluctuations, which we have
checked by going to lower temperatures for selected
system sizes. In Fig. 2 we show a small section of the
phase diagram [15] near the transition to the 1/3 solid
phase for cylindrical boundary conditions. As predicted,
the striped order is destroyed by the spontaneous appear-
ance of fractional charges as the hopping is increased.
The value of the critical hopping is lower for larger L,
which is in agreement with the argument that the energy
of the string is proportional to L. In fact, from the energy
of the effective model in Eq. (3) we expect that for a
given chemical potential the critical hopping for the
appearance of strings will decrease with 7, « 1/ L)l./ 3 to
leading order, which is confirmed in the inset of Fig. 2.
This analytic argument implies that in the thermodynamic
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FIG. 2 (color online). The phase diagram of the Bose-Hubbard
model with cylindrical boundary conditions for L, = 18 and 24
from quantum Monte Carlo (QMC) simulations at temperature
T = 0.005V. The melting phase transition line to the superfluid
phase was determined on lattices up to L, = 24 with periodic
boundary conditions. Inset: The extrapolation of the critical
hopping at u = 0.8V as a function of length L,.

limit the edge liquid phase is always the most stable
phase, and the striped order phase is just a false vaccum.
In all numerical simulations we indeed find that the edge
liquid phase becomes more stable with increasing length.
In the thermodynamic limit the correlations in the bulk
must become independent of the boundary condition, but
the presence of boundaries is still manifest by the appear-
ance of fractional charges at the edges and a correspond-
ing ‘“edge compressibility,” which are the hallmarks of
the edge liquid phase.

In the middle panel of Fig. 3, a typical snapshot of a
configuration during a Monte Carlo simulation for t =
0.102V in the edge liquid phase is shown. A string is
clearly visible by the shaded resonant hexagons (green)
and the shaded up and down triangles (red) which indicate
fractional charges near the edges. The distribution of up-
triangle fractional charges is shown in the left-hand panel
of Fig. 3. In the edge liquid phase (¢ = 0.102V) the inter-
play of maximizing L, according to Eq. (3) and the kinetic
energy of the fractional charges leads to a characteristic
maximum of fractional charges near the edges, which can
be predicted from the effective model in Eq. (2) and
resembles the solution of a particle in a linear potential
(Airy function). In the striped order phase (+ = 0.09V) no
fractional charges are found (except for virtual excita-
tions), and in the superfluid phase (¢ = 1.2V) there are
fractional charges in the entire sample, but the maximum
near the edge remains. The right-hand panel of Fig. 3
shows the change in resonant hexagon density in the differ-
ent phases.

The relevant order parameters in the different phases are
shown in Fig. 4. The spontaneous appearance of additional
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FIG. 3 (color online). A snapshot of a typical configuration
during a Monte Carlo run at w/V = 0.8, t/V = 0.102, and
B =200/V with L, = L, = 24 is shown in the middle panel.
Red indicates a higher density of empty triangles or fractional
charges and green represents a higher density of hexagons in a
resonant configuration. The density distribution of up-triangle
fractional charges is shown in the left-hand panel for the striped
order (+ = 0.09V), edge liquid (r = 0.102V), and superfluid
(t = 0.12V) phases. The right-hand panel shows the correspond-
ing densities of resonant hexagons.
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FIG. 4 (color online). (a) The change of hole density Ap
relative to the striped order phase, the structure factor with
Q = (27, 0), and the superfluid density p, at u/V = 0.8 and
B =200/V with L, = L, = 24 (solid line) and 18 (no line) in
different phases. (b) The compressibility at w/V = 0.8 for
different sizes.

charges at a critical hopping is clearly seen by the change
of total hole density Ap = (L,+ 1)/(3L,+ 1) —
Y (n;)/N (relative to the striped order phase). The struc-
ture factor S(Q)/N = (| TN mel®™|?)/N? at Q =
(271, 0) is an indication of the striped order, which drops
sharply when the fractional charges appear in the edge
liquid phase. The length dependence of the critical hopping
at which this transition occurs is shown in the inset of
Fig. 2. At still larger hopping the system enters the super-
fluid phase, which has a spontaneously broken U(1) sym-
metry (off-diagonal order) and a finite superfluid density
(p, = (W?/2Bt) in terms of the winding number W in
Monte Carlo simulations [21]). The compressibility per
site k is maybe the most interesting order parameter, since
it is zero in the striped order phase and then has a clear
maximum close to the phase transition into the edge liquid
phase. The bottom panel of Fig. 4 illustrates how this
maximum (i.e., the phase transition) moves to lower values
of t as the system size increases. At the same time the
maximum of the scaled compressibility L, « approaches a
constant; i.e., the compressibility per site decreases pro-
portional to 1/L,. Indeed, according to the considerations
above, the bulk sites do not contribute to the compressi-
bility since there are no fractional charges (see Fig. 3), so
we can observe an edge compressibility « = 1/L,. The
fluctuations of the strings lead to an effective short-range
potential between them, so the compressibility is large in
the dilute limit close to the phase transition, which is
second order. At larger hopping the string density increases
and the compressibility is reduced accordingly. The oscil-
lations in the lower panel of Fig. 4 are a finite size effect in
L : Basically, the compressibility is low when the expec-
tation value of strings is exactly integer valued n. If the

hopping is then increased, the number of strings fluctuates
between n and n + 1, which leads to an increase of the
compressibility in regular intervals, analogous to oscilla-
tions due to the quantized charging energy of a small
capacitor (Coulomb blockade).

In summary, the results show that edges have a dramatic
effect for hard-core bosons on a kagome lattice and lead to
a new edge liquid phase, which is characterized by a finite
edge compressibility but no superfluid density. Quantum
Monte Carlo simulations and analytical arguments demon-
strate that fractional excitations of up and down triangles
can be separated in space and are localized close to the
lower and upper edges, respectively. The fractional charges
are connected by quantum strings of resonant configura-
tions, which act deconfining. Edge states with a finite
compressibility and the locking of an internal quantum
number with the direction of the edge (e.g., the chirality
of the spin-momentum locking) are also famous character-
istics of topological insulators and the quantum Hall effect.
However, for the hard-core boson system studied here, the
nontrivial topology is not a property of the bulk, but is
instead controlled by the design of the sharp edges. In fact,
the study of different kinds of edges or defects in the edges
are promising future research topics. While fractional
excitations at edges have long been known in 1D systems,
such as the spin-1/2 degrees of freedom in a spin-1 chain
[22], we believe that such an effect has so far been
unknown in 2D.

Recently, much experimental progress has been made in
the realizations of related models with ultracold bosonic
gases. In particular, it is now possible to create an artificial
kagome lattice for ultracold bosons [23]. Moreover, a gas
of Rydberg atoms was successfully loaded in a two-
dimensional optical lattice, and the spatially ordered struc-
tures induced by the short-range repulsion interactions
have been observed directly [24]. In principle it should
be possible to create sharp boundaries on such systems
[25]. Together with recent advances in single-site detection
[24,26], the effects illustrated above therefore give a prom-
ising perspective of actually taking pictures of strings and
localized fractional charges analogous to the snapshot in
our simulations in Fig. 3.

We are thankful for useful discussions with Frank
Pollmann, Immanuel Bloch, Ying Jiang, Xiaogang Wen,
Jan Zaanen, and Didier Poilblanc. This work was sup-
ported by the ‘“Allianz fuer Hochleistungsrechnen
Rheinland-Pfalz,” by computer resources in ITP of CAS
thanks to Hai-Jun Zhou, and by the DFG via the SFB/
Transregio 49.

[1] G. Evenbly and G. Vidal, Phys. Rev. Lett. 104, 187203
(2010).

[2] S. Yan, D. A. Huse, and S.R. White, Science 332, 1173
(2011).

147201-4


http://dx.doi.org/10.1103/PhysRevLett.104.187203
http://dx.doi.org/10.1103/PhysRevLett.104.187203
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080

PRL 111, 147201 (2013)

PHYSICAL REVIEW LETTERS

week ending
4 OCTOBER 2013

(3]
(4]
(5]
(6]
(71

Y. Igbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev.
B 87, 060405(R) (2013).

S. Capponi, V.R. Chandra, A. Auerbach, and M.
Weinstein, Phys. Rev. B 87, 161118(R) (2013).

A.P. Ramirez, A. Hayashi, R.J. Cava, R. B. Siddharthan,
and S. Shastry, Nature (London) 399, 333 (1999).

C. Castelnovo, R. Moessner, and S.L. Sondhi, Nature
(London) 451, 42 (2008).

A. O’Brien, F. Pollmann, and P. Fulde, Phys. Rev. B 81,
235115 (2010).

T.-H. Han, J.S. Helton, S.Y. Chu, D.G. Nocera, J. A.
Rodriguez-Rivera, C. Broholm, and Y.S. Lee, Nature
(London) 492, 406 (2012).

D.J. Thouless, M. Kohmoto, M. P. Nightingale, and M.
den Nijs, Phys. Rev. Lett. 49, 405 (1982).

M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

L. Balents, Nature (London) 464, 199 (2010).

E. Mengotti, L. J. Heyderman, A.F. Rodriguez, F. Nolting,
R. V. Hiigli, and H.-B. Braun, Nat. Phys. 7, 68 (2010).
S. V. Isakov, R.G. Melko, and M. B. Hastings, Science
335, 193 (2012).

R. Moessner and S.L. Sondhi, Phys. Rev. B 63, 224401
(2001).

For a discussion of the full phase diagram, see S. V. Isakov,
S. Wessel, R. G. Melko, K. Sengupta, and Y. B. Kim, Phys.
Rev. Lett. 97, 147202 (2006).

[16]

[17]
(18]
(19]
[20]
(21]

[22]

(23]

[24]

[25]
(26]

147201-5

A.W. Sandvik, Phys. Rev. B 59, R14157 (1999); O.F.
Syljuasen and A.W. Sandvik, Phys. Rev. E 66, 046701
(2002).

K. Louis and C. Gros, Phys. Rev. B 70, 100410(R)
(2004).

P. Sengupta, A. W. Sandvik, and D.K. Campbell, Phys.
Rev. B 65, 155113 (2002).

R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607
(1986).

X.-F. Zhang, Y.-C. Wen, and S. Eggert, Phys. Rev. B 82,
220501(R) (2010).

E.L. Pollock and D. M. Ceperley, Phys. Rev. B 36, §343
(1987).

I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, Phys.
Rev. Lett. 59, 799 (1987); T. Kennedy, J. Phys. Condens.
Matter 2, 5737 (1990).

G.-B. Jo, J. Guzman, C.K. Thomas, P. Hosur, A.
Vishwanath, and D.M. Stamper-Kurn, Phys. Rev. Lett.
108, 045305 (2012).

P. Schau3, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature
(London) 491, 87 (2012).

I. Bloch (private communication).

C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P.
Schauf3, T. Fukuhara, 1. Bloch, and S. Kuhr, Nature
(London) 471, 319 (2011).


http://dx.doi.org/10.1103/PhysRevB.87.060405
http://dx.doi.org/10.1103/PhysRevB.87.060405
http://dx.doi.org/10.1103/PhysRevB.87.161118
http://dx.doi.org/10.1038/20619
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1103/PhysRevB.81.235115
http://dx.doi.org/10.1103/PhysRevB.81.235115
http://dx.doi.org/10.1038/nature11659
http://dx.doi.org/10.1038/nature11659
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nphys1794
http://dx.doi.org/10.1126/science.1212207
http://dx.doi.org/10.1126/science.1212207
http://dx.doi.org/10.1103/PhysRevB.63.224401
http://dx.doi.org/10.1103/PhysRevB.63.224401
http://dx.doi.org/10.1103/PhysRevLett.97.147202
http://dx.doi.org/10.1103/PhysRevLett.97.147202
http://dx.doi.org/10.1103/PhysRevB.59.R14157
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevB.70.100410
http://dx.doi.org/10.1103/PhysRevB.70.100410
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevB.82.220501
http://dx.doi.org/10.1103/PhysRevB.82.220501
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827

