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We show that the solid phase between the 1=5 and 2=9 fractional quantum Hall states arises from an

extremely delicate interplay between type-1 and type-2 composite fermion crystals, clearly demonstrating

its nontrivial, strongly correlated character. We also compute the phase diagram of various crystals

occurring over a wide range of filling factors and demonstrate that the elastic constants exhibit non-

monotonic behavior as a function of the filling factor, possibly leading to distinctive experimental

signatures that can help mark the phase boundaries separating different kinds of crystals.
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AWigner crystal (WC) [1] is expected to form when the
interaction energy of electrons dominates their kinetic
energy. One way to accomplish this is to force all electrons
in two dimensions into the lowest Landau level (LL) by
applying a large magnetic field [2]. The insulating phase at
filling factors � < 1=6 has been interpreted in terms of such
a crystal [3–11], although a definitive observation of the
crystalline order is so far lacking. Remarkably, an insulat-
ing phase also appears between the fractional-quantum-
Hall-effect (FQHE) [12] liquids at � ¼ 2=9 and 1=5
[3–5]. The facts that this insulator has persisted even as
the sample mobility has risen tenfold and that it is flanked
by two FQHE liquids suggest that the insulating behavior is
probably caused by pinning of a crystal rather than individ-
ual carrier freeze-out. While a qualitative scenario for the
reentrant behavior can be constructed in terms of cusps in
the energy of the liquid state [3], this behavior so far has not
been explained by a quantitative theoretical calculation.We
show in this Letter that this insulating state results from an
extremely subtle competition between the crystal and liquid
states. Our results support the interpretation of this insulator
as a pinned crystal, while also demonstrating its nontrivial
nature as a crystal of composite fermions (CFs). We also
consider the phase diagram of the crystal phase in a wider
range of filling factors, calculate the elastic constants, and
predict their nonmonotonic behavior as a function of �.

Numerous theoretical studies have considered the
crystal phase [13–27]. Maki and Zotos (MZ) [13] consid-
ered an uncorrelated Hartree-Fock WC of electrons in the
lowest LL and evaluated its elastic properties. Lam and
Girvin (LG) [14] considered a correlated WC, the energy
of which has been compared [14,28] with those of 1=m
[29] and n=ð2pnþ 1Þ FQHE states [30] (m odd integer; n,
p integers), which shows a level crossing transition at
� � 1=6. Beginning with Yi and Fertig [18], a number
of studies considered crystals of composite fermions
[19,22–24,26,27]. In particular, Chang et al. [24] demon-
strated that the CF crystals (CFCs) accurately capture the
correlations in the crystal phase.

For the questions addressed in this work, we need
the energies of both the crystal and the FQHE states
as a continuous function of �. For this purpose, we will
consider two types of CFCs. Denoting composite fermions
carrying 2p vortices by 2pCFs, these are the following.
(i) ‘‘Type-1 2pCFC’’ refers to a state in which all 2pCFs
form a crystal. When pinned by disorder, this state will
exhibit insulating behavior with divergent longitudinal
resistance. (ii) The term ‘‘type-2 2pCFC’’ refers to a state
in which the excess CF particles or holes [31] relative to a
FQHE liquid form a crystal. A type-2 CFC rides on the
background of a FQHE liquid. In the presence of some
disorder that pins the type-2 CFC, this state exhibits quan-
tized Hall resistance and dissipationless transport. Type-2
CFCs, which can be likened to a pinned Abrikosov vortex
lattice in a type-2 superconductor, are unobservable in
transport experiments but can be detected in microwave
resonance experiments [32] or by direct measurement of
the spatial density profile (shown below for some cases).
We will consider N electrons on the surface of a sphere

exposed to a total flux 2Q in units of hc=e. This geometry
[33] is convenient for its lack of boundaries and obviates
the complications requiring the introduction of ‘‘ghost
charges’’ [18]. We will denote the electron coordinates on
the sphere as rj ¼ ð�j; �jÞ, j ¼ 1; . . . ; N, and the crystal

sites by Rl ¼ ð�l; �lÞ, with l ¼ 1; . . . ; Nc, where Nc is the
number of lattice sites. It is also convenient to define the

spinor variables ðu; vÞ ¼ ð cosð�=2Þei�=2; sinð�=2Þe�i�=2Þ
and ðU;VÞ ¼ ð cosð�=2Þei�=2; sinð�=2Þe�i�=2Þ. A problem
with this geometry is that it is not possible to tile the surface
of a sphere with a crystal without introducing defects. We
place the crystal wave packet centers at the locations that
minimize the energy of charged point particles on the
surface of a sphere. Finding these locations, widely known
as the Thomson problem [34], has been accomplished
previously by a number of researchers using powerful
numerical techniques [35]. The Thomson crystal is locally
a triangular WC, and the fraction of defects vanishes as
Nc ! 1.
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We construct explicit wave functions as follows.
The system of electrons at 2Q maps into a system of
composite fermions at 2Q� ¼ 2Q� 2pðN � 1Þ [30]. We

first construct�type-K-MZ
2Q�;fRg , namely, the type-K uncorrelated

MZ crystal at 2Q� in which Nc particles are located at the
Thomson positions fR1; . . . ;RNc

g. We then obtain the

type-K 2pCFC according to the mapping

�type-K-CFC
2Q;fRg ¼ P LLL

Y
j<k

ðujvk � vjukÞ2p�type-K-MZ
2Q�;fRg ; (1)

where the Jastrow factor
QN

j<k¼1ðujvk � vjukÞ2p attaches

2p vortices to electrons and P LLL is the lowest LL projec-
tion operator, which will be evaluated by the Jain-Kamilla
method [28]. Under this mapping, electrons, LLs, and MZ
crystals get converted into CFs, �Ls, and CFCs, respec-
tively. For the type-1 2pCFC, we have Nc ¼ N and the
allowed 2p values are such that N < 2Q� þ 1; here,

�type-1-MZ
2Q�;fRg ¼ det�2Q�

Rl
ðrjÞ ¼ detðU�

l uj þ V�
l vjÞ2Q�

; (2)

where �2Q�
R ðrÞ ¼ ðU�uþ V�vÞ2Q�

is the maximally local-
ized wave packet in the lowest LL. For the type-2 2pCFC,
there are two possibilities. For certain values of 2Q� we
have n � 1 filled LLs and Nc particles in the (nþ 1)th
partially filled LL. For convenience of illustration, let us
take n ¼ 1, which corresponds to the FQHE state in the
range 2=ð4pþ 1Þ> �> 1=ð2pþ 1Þ. The wave function
of the MZ crystal is given by

�
type-2-MZ
2Q�;fRg ¼

���������������������������������������

YQ�Q��Q� ðr1Þ . . . YQ�Q��Q� ðrNÞ
..
. . .

. ..
.

YQ�Q�Q� ðr1Þ . . . YQ�Q�Q� ðrNÞ
Oy�2ðQ�þ1Þ

R1
ðr1Þ . . . Oy�2ðQ�þ1Þ

R1
ðrNÞ

..

. . .
. ..

.

Oy�2ðQ�þ1Þ
RNc

ðr1Þ . . . Oy�2ðQ�þ1Þ
RNc

ðrNÞ

���������������������������������������

;

(3)

where YQQmðrÞ / ð�1ÞQ�mvQ�muQþm are the lowest LL

monopole harmonics [31], Nc ¼ N � ð2Q� þ 1Þ, and
Oy ¼ v�ð@=@uÞ � u�ð@=@vÞ is the LL raising operator in
the spherical geometry [36] (which also lowers the mono-
pole strength by one unit). For � < 1=ð2pþ 1Þ, we form a
crystal of Nc ¼ 2Q� þ 1� N CF holes in the background
of one filled � level. Here the MZ crystal is obtained by

taking the filled LL wave function
Q2Q�þ1

j<k¼1ðujvk � vjukÞ
and replacing the Nc coordinates (uj, vj) with j ¼ N þ
1; . . . ; 2Q� þ 1 by the Thomson positions (Ul, Vl). P LLL is
not required for either the type-2 CF-hole crystal or the
type-1 CFC.

Figure 1 shows the electron density profiles for various
possible crystals for a filling factor slightly larger than 1=5:
1(a) type-1MZ crystal, 1(b) type-1 2CFC, and 1(c) and 1(d)

type-2 4CFC. Correlations in the type-1 2CFC result in a
slight delocalization of the electrons at the lattice sites as
compared to the MZ crystal [compare Figs. 1(a) and 1(b)].
The type-2 CFC looks remarkably different. An isolated CF
in the second � level is known to have the shape of a ring
[31]. A ‘‘ring crystal’’ is clearly seen in Fig. 1(d) where the
composite fermions in the second �L are far from one
another. The lattice spacing decreases with increasing fill-
ing factor, and the rings begin to overlap, producing a
complex interference pattern as seen in Fig. 1(c), in which
the density maximum occurs on the line joining adjacent
sites producing a ‘‘bond crystal.’’ Even more intricate den-
sity profiles can occur for type-2 CFCs in higher �Ls.
Figure 2 shows the energies, obtained via standard

Metropolis Monte Carlo techniques [31], for several
type-1 and type-2 CFCs (the latter labeled FQHE) for 96
particles as a function of �. A reentrant insulating phase
appears in a filling factor range between the 1=5 and 2=9
FQHE states, where the type-1 CFC beats the FQHE state
(supporting a type-2 CFC) by an energy of 0.0005 e2=�‘
per particle. To put this in perspective, we recall that the
theoretical excitation gaps at 1=3 and 1=5 are �0:1e2=�‘
and �0:025e2=�‘, respectively. The MZ crystal does not
produce the reentrant crystal phase; in spite of apparently
small differences in the density profiles, the energy of the
MZ crystal is higher by �0:006e2=�‘ per particle than the

FIG. 1 (color online). Density profiles for some type-1 and
type-2 CF crystals on the surface of a sphere. All systems contain
N ¼ 96 particles. The parameters are (a) MZ crystal and
(b) type-1 2CFC for 2Q ¼ 433 at � ¼ 0:2188, (c) type-2 4CFC
for Nc ¼ 42 and 2Q ¼ 433 at � ¼ 0:2188, (d) type-2 4CFC for
Nc ¼ 24 and 2Q ¼ 451 at � ¼ 0:2103. The filling factor in
this region is determined using the interpolation relation � ¼
ðN þ 2Þ=ð2Qþ 15Þ, which correctly reproduces the known finite
size ‘‘shifts’’ in 2Q at � ¼ 1=5 and � ¼ 2=9. The density is
plotted in units of �0 ¼ N=4�R2. While comparing different
plots, note that the radius of the sphere is R ¼ ffiffiffiffi

Q
p

in units of the
magnetic length.
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energy of the type-1 CFC at � � 1=5. The energy of the
LG crystal is 0:002 14e2=�‘ above the 1=5 FQHE state and
0:003 05e2=�‘ above the 2=9 FQHE state (using the ther-
modynamic limits from Refs. [14,28]), and will also not
capture the insulating crystal phase between 1=5 and 2=9.
The understanding of the insulating phase between 1=5 and
2=9 as the 2CF crystal leads to the intuitively pleasing
picture in which the 4CFs of the nearby liquid states shed
two of their vortices to establish a crystal, while retaining
energetically favorable correlations through the remaining
two vortices.

It has recently been demonstrated [37] that the density
distribution of the electrons can be accessed through NMR

measurements, because the Knight shift is proportional to
the local electron density. As shown in the Supplemental
Material [38], the type-1 and type-2 CFCs have remarkably
different density distributions, which may allow NMR to
identify the phase boundaries in the region 1=5< �< 2=9.
We have also studied the competition between the liquid

and crystal phases at lower fillings, where we consider
type-1 2pCFCs with different choices of 2p to determine
which produces the lowest energy. As � is lowered below
1=5, a series of type-1 2pCFCs with increasing vorticity
occurs. No FQHE state supporting a type-2 CFC appears
for � < 1=6 (We cannot rule out FQHE states with fillings
n=ð6n� 1Þ in the range 1=5> �> 1=6, not studied here
due to complications associated with reverse flux attach-
ment [39]). The phase boundaries practically remain
unchanged for N > 32 (see Supplemental Material [38]),
and thus represent the thermodynamic limit. We have
also studied the effect of finite thickness, which does
not change the phase diagram appreciably. Using the
model of Ref. [40], we have considered quantum well
structures with the well widths ranging from 20 to 80 nm
and the electron density ranging from 1:0� 1010 to 1:5�
1011 cm�2, and found that even though the energy per
particle decreases by up to 10% for the largest densities
and widths considered, the phase boundaries are little
changed.
To formulate the low-energy dynamics of type-1 CFCs,

we begin by modeling the CFC as a collection of charged
point particles that interact through an effective interaction
VðRjkÞ with Rjk ¼ jRj � Rkj, but are otherwise classical.

The dynamical matrix �	
ðkÞ, where 	, 
 denote spatial

directions, is given by [13]

�	
ðkÞ ¼
X
j

½1� cosðk �RjÞ�
@2VðRjÞ

@Rj;	@Rj;


’
�
�

k
þ ðCL � CtÞ

�
k	k
 þ �	
C

tk2; (4)

where Rj ¼ jRjj. In the above, the second line is obtained

in the k ! 0 limit under the explicit assumption of the C6

symmetry. Between the two elastic parameters, CL and Ct,
the shear modulus Ct is of special importance because it
determines the low-energy behavior of the magnetophonon
mode and its becoming negative signals an instability of
the crystal. As shown in the Supplemental Material, for the
hexagonal lattice it can be obtained directly from the
energy per particle of the crystal by the following equation:

Ct
CF ¼

1

2
�2 @2

@�2
ðECF � EMZÞ þ Ct

MZ; (5)

where EMZ is defined as the energy of a hexagonal crystal
of classical particles interacting with the MZ interaction
VMZ ¼ ð ffiffiffiffi

�
p

=4ÞðI0ðR2=8Þ= coshðR2=8ÞÞ, and the deriva-
tives with respect to � are to be evaluated at fixed B (i.e.,
fixed ‘). The derivation of this relation relies on the

FIG. 2 (color online). Upper panels: Energy per particle as a
function of filling factor for various type-1 and type-2 CFC
states. The latter are labeled FQHE. All energies are quoted
relative to a reference energy Efit ¼ �0:782 133�1=2 þ
0:2623�3=2 þ 0:18�5=2 � 15:1e�2:07=�, which has a form similar
to that in Ref. [14] but with coefficients modified to display the
energy differences between the competing states more clearly.
Lower panels: Shear moduli of type-1 crystals of composite
fermions with 2p vortices. The shear modulus of the MZ crystal,
given by the solid black line, is shown for reference. The shear
modulus of the 2pCFC is indicated by a solid line in the regime
where it is the ground state and by a dashed line otherwise. The
regions 0< �< 1=6 and 1=6< �< 4=17 are shown in separate
panels because different filling factor scales are used for them.
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assumptions that the dynamics of the crystal can be
described in the harmonic approximation and that the total
energy can be approximated as a sum of two-body inter-
actions. The latter approximation becomes unreliable as
the system approaches �� ¼ 1, or � ¼ 1=ð2pþ 1Þ, where
the crystal wave function actually merges into a FQHE
liquid (this is analogous to the fact that at � ¼ 1 the MZ
wave function describes the � ¼ 1 liquid state). However,
for the MZwave function, this assumption is quite accurate
for � < 1=2 (see Supplemental Material [38]), and by
analogy, we expect it to be accurate for 2pCFC for up to
�� < 1=2, or � < 1=ð2pþ 2Þ.

The lower panel of Fig. 2 shows the shear modulus of the
2pCFCs as a function of filling factor. As noted above, the
shear modulus for 2pCFC close to � ¼ 1=ð2pþ 1Þ is
quantitatively unreliable due to the importance of the
three- and higher-body terms in the effective interaction
that have been neglected above. Fortunately, in the physi-
cally relevant regions, we have �� < 1=2, and therefore we
believe that Ct

CF shown by the solid lines is accurate; the

only exception is for 4CFC for which the Ct
CF for � > 1=6

is not quantitatively reliable. The shear modulus exhibits,
unlike for the MZ or LG crystal, a series of discontinuities
at the phase boundaries, which serve as a possible way of
measuring the phase diagram.

Transport [3–5] and photoluminescence [41–43] experi-
ments have probed the temperature dependence of the
insulating phase. The melting of the crystal is of interest,
and two possibilities can result in remarkably different
experimental manifestations. The Kosterlitz-Thouless
(KT) [44,45] melting temperature is given by [13]

kBTKT=ðe2=�‘Þ ¼ ð2� ffiffiffi
3

p Þ�1ðCt
CF=C

t
classicalÞ0:097 75�1=2,

where Ct
classical ¼ 0:097 75�1=2. Another possibility is that

of melting into the FQHE liquid, considered by Price et al.
[46], the transition temperature TM for which is determined
by the competition of the free energies of the crystal and
liquid states [38]. The resulting transition temperatures are
shown in Fig. 3. We find that at � ¼ 1=7 (and also lower
fillings) the transition occurs into a FQHE liquid, whereas
for the crystal between 1=5< �< 2=9 the melting is gov-
erned by the KT physics; the difference arises because of
much larger roton gap at 1=5. The inset shows the phase
boundary as a function of the filling in the range 1=5<
�< 2=9. Note that, for a narrow range of �, the FQHE state
freezes into a type-1 CFC with increasing temperature and
then melts back into the FQHE state; the possibility of a
similar reentrant transition was noted previously in
Ref. [46] at � ¼ 1=3 and 1=5 at certain values of LL
mixing.

Chitra et al. [47,48] have developed an elastic model
which predicts the pinning frequency of the classical WC.
Using the shear moduli of the type-1 2pCFCs, we find
nontrivial quantum corrections to the classical pinning
frequencies. The magnetic field dependence of the pinning
frequency has two forms depending on the length scale of

disorder, rf: !p / �=Ct
CF for rf > ‘ and !p / ð�2Ct

CFÞ�1

for rf < ‘, assuming constant density. Clearly, the discon-

tinuity of theCt
CF at the phase boundaries will translate into

a discontinuity in !p.

Several features of our calculation are consistent with
experimental observations. The range of the reentrant
crystal in Fig. 2, 0:207< �< 0:218, agrees with the region
where activated behavior has been observed [3]. No type-1
2pCFC appears for � > 2=9, consistent with an absence of
an insulator here in high quality samples. The observation
of FQHE-like structure at very low fillings (such as 1=7
and 1=9) observed in Ref. [5] at somewhat elevated
temperatures is consistent with a melting of the crystal
into a FQHE state. The frequency dependent conductivity
measured in microwave absorption experiments shows
resonances between 1=5 and 2=9 [11], which continue in
the insulator below 1=5 until � ¼ 0:18. It is tempting to
attribute these features to the 2CFC on either side of the
1=5 state. A qualitative change in the behavior and a
decreasing pinning frequency below � ¼ 0:18 may indi-
cate a transition into a 4CFC, although further work will be
needed for a conclusive statement. We note that, unlike for
MZ or LG crystals, the pinning frequency of the CFC is
predicted to have a complicated dependence on � and
can sometimes decrease with increasing � in the regime
rf > ‘; such behaviors have been seen in lower mobility

samples [6,7]. The transition temperatures obtained above
are generally higher than those estimated from experiments
(although a clean transition has not yet been observed). We
also note that we have not considered disorder and LL
mixing, which will affect the phase boundaries and melting
temperatures.
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FIG. 3 (color online). Melting temperature of the CF crystal at
� ¼ 1=7 and � ¼ 0:213 as determined by the Kosterlitz-
Thouless mechanism (solid lines) and a first order transition
into a FQHE liquid [46] (dotted lines). The inset shows the phase
diagram in the filling factor range 1=5 	 � 	 2=9 for B ¼ 25 T.
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[17] R. Côté and A.H. MacDonald, Phys. Rev. B 44, 8759

(1991).
[18] H. Yi and H.A. Fertig, Phys. Rev. B 58, 4019 (1998).
[19] R. Narevich, G. Murthy, and H.A. Fertig, Phys. Rev. B 64,

245326 (2001).
[20] K. Yang, F. D.M. Haldane, and E.H. Rezayi, Phys. Rev. B

64, 081301 (2001).
[21] N. Shibata and D. Yoshioka, J. Phys. Soc. Jpn. 72, 664

(2003).
[22] S. S. Mandal, M. R. Peterson, and J. K. Jain, Phys. Rev.

Lett. 90, 106403 (2003).
[23] G. S. Jeon, C. C. Chang, and J. K. Jain, J. Phys. Condens.

Matter 16, L271 (2004); Phys. Rev. B 69, 241304(R)
(2004).

[24] C.-C. Chang, G. S. Jeon, and J. K. Jain, Phys. Rev. Lett.
94, 016809 (2005).

[25] W. J. He, T. Cui, Y.M. Ma, C. B. Chen, Z.M. Liu, and
G. T. Zou, Phys. Rev. B 72, 195306 (2005).
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