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We propose a unified description of transport in graphene with adsorbates that fully takes into account

localization effects and loss of electronic coherence due to inelastic processes. We focus in particular on

the role of the scattering properties of the adsorbates and analyze in detail cases with resonant or

nonresonant scattering. For both models, we identify several regimes of conduction, depending on the

value of the Fermi energy. Sufficiently far from the Dirac energy and at sufficiently small concentrations,

the semiclassical theory can be a good approximation. Near the Dirac energy, we identify different

quantum regimes, where the conductivity presents universal behaviors.
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Electronic transport in graphene [1–4] is sensitive to
static defects that are, for example, frozen ripples, screened
charged impurities, or local defects like vacancies or adsor-
bates [5–8]. Adsorbates, which can be organic groups or
adatoms attached to the surface of graphene, are of par-
ticular interest in the context of functionalization, which
aims at controlling the electronic properties by attaching
atoms or molecules to graphene [9–14]. Therefore, there is
a need for a theory of conductivity in the presence of such
defects.

Theoretical studies of transport in the presence of local
defects have dealt mainly either with the Bloch-Boltzmann
formalism or with self-consistent approximations
[10,15–22]. In these theories, a major length scale that
characterizes the electron scattering is the elastic mean-
free path Le. These approaches indeed explain some experi-
mental observations such as the quasilinear variation
of conductivity with a concentration of charge carriers
[10–14]. Yet, these theories have important limitations and
can hardly describe in detail the localization phenomena that
have been reported in some experiments [6,7,11,12]. Indeed,
in the presence of a short range potential, such as that
produced by local defects, the electronic states are localized
on a length scale � [23–26]. A sample will be insulating
unless some source of scattering, like electron-electron or
electron-phonon interaction, leads to a loss of the phase
coherence on a length scale Li < �. Therefore, in addition
to the elastic mean-free pathLe, the inelastic mean-free path
Li and the localization length � also play a fundamental role
for the conductivity of graphene with adsorbates.

In this Letter, we develop a numerical approach for
the conductivity that treats exactly the tight-binding
Hamiltonian and takes fully into account the effect of
Anderson localization. This approach gives access to the
characteristic lengths and to the conductivity as a function
of the concentration, the Fermi energy EF, and the inelastic

mean-free path Li. In real samples, Li depends on the
temperature, or magnetic field, but it is an adjustable
parameter in this work. Our results confirm that sufficiently
far from the Dirac energy and for sufficiently small adsor-
bate concentrations, the Bloch-Boltzmann theory and the
self-consistent theories are valid whenLe � Li � �. Near
the Dirac energy, we identify different regimes of transport
that depend on whether the adsorbates produce resonant or
nonresonant scattering. These different regimes of trans-
port present some universal characteristics, the consequen-
ces of which are discussed for experimental measurements
of conductivity and magnetoconductivity.
Models of adsorbates.—The scattering properties of

local defects like adsorbates or vacancies are characterized
by their T matrix. Local defects tend to scatter electrons in
an isotropic way for each valley and lead also to strong
intervalley scattering. Yet, the energy dependence of the T
matrix depends very much on the type of defect, and in this
work, we focus on the role of this energy dependence. To
this end, we consider two models for which the T matrix
diverges at the Dirac energy (resonant adsorbates leading
to midgap states also called zero-energy modes) or is
constant (nonresonant adsorbates). Note that resonances
can occur also at nonzero energy, but here we restrict
ourselves to the important case of zero-energy modes.
The conclusions drawn here, concerning the influence of
the energy dependence of the T matrix for adsorbates, are
useful for other types of local defects.
We consider that the adsorbates create a covalent bond

with some atoms of the graphene sheet. Then, a generic
model is obtained by removing the pz orbitals of these
carbon atoms [17–19,22–29]. For example, a hydrogen
adsorbate can be modeled by removing the pz orbital of
the carbon atom that is just below the hydrogen atom. This
is the model of resonant adsorbate that we consider here.
In this case, the T matrix associated with the adsorbate
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diverges at the Dirac energy, hence the name resonant
scatterers. The nonresonant model is constituted by two
neighboring missing orbitals (divacancy). In that case, the
T matrix is nearly constant close to the Dirac energy and
does not diverge.

Finally, we consider here that the up and down spins are
degenerate; i.e., we deal with a paramagnetic state. Indeed,
the existence of a magnetic state for various adsorbates,
like hydrogen, for example, is still debated [30]. Let us
emphasize that in the case of a magnetic state, the up and
down spins give two different contributions to the conduc-
tivity but the individual contribution of each spin can be
analyzed from the results discussed here. With these as-
sumptions, the generic model Hamiltonian for adsorbates
can be written as

H ¼ �t
X
hi;ji

ðcyi cj þ cyj ciÞ; (1)

where hi; ji represents nearest-neighbor pairs of occupied
sites and t ¼ 2:7 eV determines the energy scale. In our
calculations, the vacant sites (resonant adsorbates) or the
divacant sites (nonresonant adsorbates) are distributed at
random with a finite concentration.

Evaluation of the conductivity.—The present study
relies upon the Einstein relation between the conductivity
and the quantum diffusion. We evaluate numerically the
quantum diffusion using the Mayou-Khanna-Roche-
Triozon approach [31–35]. This method has been used to
study quantum transport in disordered graphene, chemi-
cally doped graphene, graphene with functionalization,
and graphene with structural defects [13,14,26,29,36–41].
We introduce an inelastic scattering time �i, beyond which
the propagation becomes diffusive due to the destruction
of coherence by inelastic processes (relaxation time
approximation) [42–47]. We finally get (see Sec. I of the
Supplemental Material [48])

�ðEF; �iÞ ¼ e2nðEFÞDðEF; �iÞ; (2)

DðEF; �iÞ ¼ L2
i ðEF; �iÞ
2�i

; (3)

where EF is the Fermi energy, nðEFÞ the density of states
(DOS), DðEF; �iÞ the diffusivity, �i the inelastic scattering
time, and LiðEF; �iÞ the inelastic mean-free path. LiðEF; �iÞ
is the typical distance of propagation during the time
interval �i for electrons at the energy EF in the system
without inelastic scattering [49].

The typical variation of �ð�iÞ in our study (see Sec. II of
the Supplemental Material [48]) is equivalent to that found
in previous works [14,38]. At small times, the propagation
is ballistic and the conductivity �ð�iÞ increases when �i
increases. For large �i, the conductivity �ð�iÞ decreases
with increasing �i due to quantum interference effects and
ultimately goes to zero in our case due to Anderson local-
ization in two dimensions.

We define the microscopic conductivity �M as the maxi-
mum value of the conductivity over all values of �i.
According to the renormalization theory, this value is
obtained when the inelastic mean-free path Lið�iÞ and the
elastic mean-free path Le are comparable. This micro-
scopic conductivity �M represents the conductivity with-
out the effect of quantum interferences in the diffusive
regime (localization effects) and can be compared to semi-
classical or self-consistent theories which also do not take
into account the effect of quantum interferences in the
diffusive regime.
Finally, we note that in the above formulas, it is assumed

that the inelastic scattering does not affect the DOS nðEFÞ.
However, this scattering can also lead to a mixing of states
that affects the DOS. In the Supplemental Material [48]
(Sec. V), we analyze in detail this effect of the mixing of
states. Although it is difficult to quantify, our results strongly
suggest that the effect of themixing plays aminor role except
for the microscopic conductivity �M of the zero-energy
modes where indeed the DOS varies quickly. This leads us
to conclusions in contrast with those of a recent study [26]
(see below and Sec. Vof the Supplemental Material [48]).
Resonant adsorbates (monovacancies).—Figure 1 shows

the total DOS with three different regimes consistent
with previous studies [10,26]. At sufficiently large ener-
gies, the density of pure graphene is weakly affected. Near
the Dirac energy, there is an intermediate regime where the
pseudogap is filled. Very close to the Dirac point, there is a
third regime where the density presents a peak which is
reminiscent of the midgap state (also called zero-energy
modes) produced by just one missing orbital.
Figure 2 shows these three regimes for the microscopic

conductivity �M. In the first regime, i.e., at sufficiently
large energies, �M ’ �B, where �B is calculated with the
Bloch-Boltzmann approach [19]. In this regime where the
DOS is weakly affected (see above), �M � G0 ¼ 2e2=h
and � � Le (see Secs. III and IV of the Supplemental
Material [48]).
When the energy decreases, the semiclassical model fails

(Fig. 2), and a second regime occurs inwhich�M ’ 4e2=�h.
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FIG. 1 (color online). Densities of states versus energy for
resonant adsorbates (monovacancies) with concentrations of
(empty circles) 0.1%, (empty square) 0.2%, and (filled circle)
0.4%. The dashed lines represent graphene without adsorbates.
(Inset: electron density per atom ne versus energy.)
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This is consistent with predictions of self-consistent theo-
ries and with numerical calculations [10,15–19,22,26].
In agreement with the literature, we find that the onset for
this regime corresponds to about one electron per impurity,
as shown by Fig. 2. Also, this intermediate regime occurs
when the Fermi wave vector kF is such that kFLe ’ 1.

A characteristic length scale in this intermediate regime
is the distance d between adsorbates (see the Supplemental
Material [48]). Here, d ¼ 1=

ffiffiffi
n

p
, where n is the adsorbate

density and d ’ 5 nm for a concentration of 0.1%. In this
intermediate regime, Le (defined precisely in Sec. III of the
Supplemental Material [48]) depends on the energy but
stays comparable to d. This can be understood by noting
that Le, which according to the semiclassical theory tends
to zero at the Dirac energy, cannot be much smaller than
the distance d between the scattering centers.

At smaller energies, a peak of the microscopic conduc-
tivity �M appears very close to the Dirac energy which
coincides with the peak of the DOS and represents a third
regime of transport. This peak of conductivity is not

predicted by self-consistent theories. It is not obtained by
Refs. [18,19] and is present in the calculation of Ref. [22]
although much less marked than in the present work. This
peak is obtained with very similar values in the recent work
[26]. In this peak, �M increases with the concentration
of defects. Yet, �M is calculated here by neglecting the
mixing of energy levels due to the inelastic scattering
processes. As shown in the inset of Fig. 2(a), we find that
this peak can decrease when the mixing of the levels due to
the inelastic scattering processes is taken into account
(see Sec. V of the Supplemental Material [48]).
We discuss now these three regimes for the conductivity

when Li > Le [Fig. 2(b)]. At high energies, we find stan-
dard localization effects consistent with very large local-
ization lengths (see the Supplemental Material [48]). In the
intermediate regime (i.e., �M ’ 4e2=�h), for concentra-
tions 0.1% to 10%, the conductivity is well represented by
the equation

�ðLiÞ ’ 4e2

�h
� �

2e2

h
log

�
Li

Le

�
: (4)

The coefficient is � ’ 0:25, which is close to the result
of the perturbation theory of two-dimensional Anderson
localization for which � ’ 1=� [49]. We emphasize that
the regime is not perturbative close to the Dirac point. This
expression shows no effect of antilocalization [50], as
expected for purely short range scattering. Indeed, in that
case, graphene belongs to an orthogonal symmetry class
with localization effects as in a standard two-dimensional
metal without spin-orbit coupling [51]. The localization
length � deduced from this expression (4) is such that
�ð�Þ ¼ 0, which gives � ’ 13Le. This results justifies
previous estimates of the localization length from the
calculation of the elastic mean-free path that were done
in this plateau of microscopic conductivity [40]. As dis-
cussed above, the elastic mean-free path Le depends on the
energy in this regime but is of the order of the distance d
between adsorbates. Therefore, d determines the order of
magnitude of the localization length � and of the elastic
mean-free path Le. More precisely, in the range of concen-
trations 0.1% to 10% (see Sec. IV of the Supplemental
Material [48]), the localization length in this regime is � ’
20d=r, where the ratio r decreases with increasing energy
and is 1 � r � 3. The values of the localization length
found at 10% in Ref. [24] are consistent with our study.
In the third regimewhere the DOS and�M present a peak,

the conductivity does not follow the above law [Eq. (4)].

�ðLiÞ fits better with a power law �ðLiÞ / L��
i , where �

depends on the concentration (here, 1<�< 2). This is
consistent with the divergence of the localization length �
predicted in Ref. [23], although we do not recover the
behavior found precisely at the Dirac energy. Since our
energy resolution is of the order of 10�2 eV, we conclude
that the zero-energy behavior of the conductance exists only
in a narrow energy range and could be difficult to observe
experimentally.
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FIG. 2 (color online). Conductivity for resonant adsorbates
(monovacancies) for three concentrations (see the caption of
Fig. 1). (a) Microscopic conductivity �M versus electron density
per atom ne. The dotted lines represent predictions of the
Boltzmann theory close to the Dirac energy [19]. [Inset: enlarge-
ment of the low-concentration limit: the lines represent graphene
without mixing of states, the dashed lines graphene with mixing
of states on an energy range �E ¼ @=�i (see Sec. V of the
Supplemental Material [48]).] (b) Conductivity � versus inelas-
tic scattering length Li at energies E ¼ 0:03 eV (thin line) and
E ¼ 0:04 eV (thick line). The dot-dashed straight lines show the
slope � ¼ 0:25 for Li � Le (see the text). [Inset: �ðLiÞ at E ¼ 0
in a log-log scale.] G0 ¼ 2e2=h.
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In the presence of a magnetic field, the magnetic length

LðBÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p
plays the role of a finite coherence length

just as the inelastic mean-free path LiðTÞ. When LðBÞ<
LiðTÞ, the relevant coherence length is LðBÞ and the
conductivity is �ðLðBÞÞ. This could be compared to our
results, in particular, for Eq. (4).

Nonresonant adsorbates (divacancies).—Figure 3 shows
the total densities of states as a function of energy for the
nonresonant adsorbates. The result is similar to that
obtained by the self-consistent Born approximation for
Anderson disorder [15]. The two models are not strictly
equivalent, but both have an energy-independent T matrix
close to the Dirac energy. The microscopic conductivity
�M presents a minimum with �M ’ 4e2=�h in a narrow
concentration range (Fig. 4). Again, this is consistent
with the self-consistent Born approximation predictions
for the Anderson model [15]. At the Dirac energy, we
find that the conductivity can be represented by a power
law �ðLiÞ / L��

i with � ’ 4–6. Yet, Eq. (4) also fits with

� ’ 0:75, which gives � ’ 2:5Le. In any case, the quick
decrease of the conductivity �ðLiÞ with Li and the narrow
concentration range for the minimum of �M suggest that
the value �M ’ 4e2=�h could be very difficult to find
experimentally.

A recent experimental work [52] shows that graphene
with defects induced by helium ion, at about a 1% con-
centration, presents Anderson localization even at room
temperature. Our study suggests that at such a concentra-
tion, only resonant adsorbates can create the strong local-
ization. The length of the samples, less than 100 nm, is also
consistent with small inelastic scattering [6].

Conclusion.—To conclude our study shows that the
energy dependence of the scattering properties of local
defects is a determinant for transport and magnetotransport
properties of graphene with adsorbates. Sufficiently far
from the Dirac energy, and for not too high concentrations,
the semiclassical approach is usually valid. Yet, closer
from the Dirac point, there are regimes where the quantum
effects are essential. For resonant adsorbates, we find that

in the regime of the so-called minimum conductivity, the
conductivity is well represented by Eq. (4). The character-
istic length scale is the distance d between defects, and the
localization length � and the elastic mean-free path Le are
given by � ’ 13Le ’ 20d=r, where the ratio r decreases
with increasing energy and is 1 � r � 3. Closer from the
Dirac energy, there is a peak in the DOS which corresponds
to another regime of transport in a band of midgap states.
We find a critical behavior partly consistent with
Refs. [23,26]. In this regime, we have shown that the
inelastic scattering can destroy the peak of the DOS, which
strongly affects the conductivity. Yet, a proper understand-
ing of the physics of transport in this peak clearly requires
further studies [53]. For nonresonant adsorbates, in a nar-
row energy range near the Dirac energy, the microscopic
conductivity �M presents a minimum with the universal
value �M ’ 4e2=�h. Yet, at the Dirac energy, there are
strong localization effects. These could make the experi-
mental observation of the universal value �M ’ 4e2=�h
very difficult. Finally, we emphasize that the methodology
used here to study quantum effects for electronic transport
is of wide applicability. In particular, important related
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FIG. 3 (color online). Densities of states versus energy for
nonresonant adsorbates (divacancies) with concentrations 0.5%
(empty circles), 1% (empty squares), and 2% (filled circle). The
dashed lines represent graphene without adsorbates. (Inset: elec-
tron density per atom ne versus energy.)
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FIG. 4 (color online). Conductivity for nonresonant adsorbates
(divacancies) for three concentrations (see the caption of Fig. 3).
(a) Microscopic conductivity �M versus electron density per
atom ne. The dotted lines represent predictions of the
Boltzmann theory close to the Dirac energy. [Inset: enlargement
of the low-concentration limit: the lines represent graphene
without mixing of states, the dashed lines graphene with mixing
of states on an energy range �E ¼ @=�i (see Sec. V of the
Supplemental Material [48]).] (b) Conductivity � versus inelas-
tic scattering length Li at E ¼ 0 in a log-log scale. [Inset: �ðLiÞ
at E ¼ 0:1 eV.] G0 ¼ 2e2=h.
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problems such as magnetoconductivity of graphene be-
yond the low field limit or competition between scattering
by defects with long range and short range potentials could
be studied as well [50].
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