
‘‘Liquid-Gas’’ Transition in the Supercritical Region: Fundamental Changes
in the Particle Dynamics

V.V. Brazhkin,1 Yu. D. Fomin,1 A. G. Lyapin,1 V. N. Ryzhov,1 E. N. Tsiok,1 and Kostya Trachenko2

1Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow, Russia
2South East Physics Network and School of Physics, Queen Mary University of London,

Mile End Road, London E1 4NS, United Kingdom
(Received 13 May 2013; published 4 October 2013)

Recently, we have proposed a new dynamic line on the phase diagram in the supercritical region, the

Frenkel line. Crossing the line corresponds to the radical changes of system properties. Here, we focus on

the dynamics of model Lennard-Jones and soft-sphere fluids. We show that the location of the line can be

rigorously and quantitatively established on the basis of the velocity autocorrelation function (VAF) and

mean-square displacements. VAF is oscillatory below the line at low temperature, and is monotonically

decreasing above the line at high temperature. Using this criterion, we show that the crossover of particle

dynamics and key liquid properties occur on the same line. We also show that positive sound dispersion

disappears in the vicinity of the line in both systems. We further demonstrate that the dynamic line bears

no relationship to the existence of the critical point. Finally, we find that the region of existence of

liquidlike dynamics narrows with the increase of the exponent of the repulsive part of interatomic

potential.
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A liquid near the melting curve has much more in
common with a solid than with a gas. For example, a liquid
supports transverse collective modes at high frequency that
endow the liquid with shear rigidity at that frequency
[1–6]. To denote this state of the liquid, the term ‘‘rigid
liquid’’ was proposed [7]. In the rigid liquid, particle
motion consists of fairly rare jumps and oscillatory motion
between the jumps. This is reflected in relaxation time �,
the time between two consecutive particle jumps at one
point in space, being larger than the shortest vibration
period �0 (�0 ¼ 2�=!0, where !0 is the maximal fre-
quency of transverse modes). This description of liquid
dynamics has been proposed by Frenkel [8], and was
subsequently rediscovered and used in a number of papers
(see, e.g., Refs. [9–11]).

Recently, we have shown that the condition � � �0
defines a line, the Frenkel line on the phase diagram that
separates the state of the rigid liquid from the ‘‘nonrigid’’
gaslike fluid [7,12–14]. Crossing the Frenkel line on tem-
perature increase results in the disappearance of shear
rigidity at all frequencies, specific heat reaching 2kB,
and, importantly, the qualitative change of temperature
dependence of key system properties [7,12,13]. The line
is universal: it separates two states at arbitrarily high
pressure and temperature, and exists in systems where
liquid-gas transition is absent.

A particularly interesting consequence of crossing the
Frenkel line from above is the appearance of positive sound
dispersion (PSD) [7], the increase of the speed of sound at
high frequency [4–6]. Recently, an attempt was made to
locate the dynamical line on the basis of molecular dy-
namics simulations of PSD for supercritical Ar [15].

The condition � � �0 is related to the microscopic dy-
namics at the Frenkel line, although determining the line
using this condition can be done in an approximate way
only. When � and �0 become comparable, particle motion
may not be uniquely separated into oscillations and jumps.
Besides, the separation of quasiharmonic oscillations in a
liquid into longitudinal and transverse is not rigorously
defined at high temperature. For this reason, an important
question remains about how to rigorously define the dra-
matic crossover at the Frenkel line.
The main aim of this work is to identify the dynamic

crossover on the basis of uniquely defined physical char-
acteristics: velocity autocorrelation function ZðtÞ and
mean-square displacement hr2ðtÞi. Among other proper-
ties, we discuss positive sound dispersion and its behavior
at the Frenkel line.
Velocity autocorrelation function (VAF) ZðtÞ is

defined as

ZðtÞ ¼ hvð0ÞvðtÞi: (1)

It is well known that ZðtÞ for the gas is a monotonically
decaying function, whereas for solids and liquids near
melting it has both oscillatory and decaying components
(see Refs. [16,17] and references therein). ZðtÞ for various
liquids was studied in detail. In the early paper [18], it was
found that ZðtÞ for supercritical Lennard-Jones (LJ) fluids
may contain both liquidlike and gaslike features, although
this fact did not attract subsequent attention. Hiwatari and
coauthors have found that depending on the density, ZðtÞ is
qualitatively different in soft-sphere (SSp) fluids [19]. This
was followed by the attempt to relate the oscillations of
ZðtÞ and atomic vibrations in SSp fluid [20]. No detailed
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analysis of ZðtÞ was performed up to date to distinguish the
dynamics between systems in the liquid and gaslike fluid
states.

Similarly, the time dependence of the mean-square dis-
placement hr2ðtÞi is qualitatively different in liquids and
solids. Consequently, the behavior of hr2ðtÞi at long times
can be used to calculate the diffusion coefficient in liquids
and determine melting and crystallization or vitrification
points. At the long time limit, the diffusion coefficient D is
related to the mean-square displacement asD ¼ hr2ðtÞi=6t.
Evidently, the time dependence of hr2ðtÞi in liquids and
gases should be different at short times, yet no detailed
analysis of hr2ðtÞi was performed in this time regime.

We note that the second time derivative of hr2ðtÞi is
proportional to ZðtÞ. Indeed, using the well-known
equation (see, for example, Ref. [16])

hr2ðtÞi ¼ 6
Z t

0
ðt� sÞZðsÞds;

one has

@2=@t2hr2ðtÞi ¼ 6ZðtÞ: (2)

Therefore, the analysis of the second derivative of hr2ðtÞi
and ZðtÞ is formally equivalent.

We have studied LJ liquid and SSp liquids with different
exponent n and in a wide range of parameters. The phase
diagram of the SSp system corresponds to the equation

� ¼ ��3ð"=kBTÞ3=n ¼ const. Here, the values of � ¼
2:33 for n ¼ 6; � ¼ 1:15 for n ¼ 12, and � ¼ 0:942 for
n ¼ 36 have been calculated using the data obtained in
Ref. [21]. In the simulations of the LJ liquid, the system
size varied depending on the density reaching 4000 parti-
cles at the highest density. The equations of state were
integrated using the velocity Verlet algorithm; the systems
were simulated in the number of particles-volume-energy
ensemble. The usual equilibration and production runs
consisted of 1:5� 106 steps, with the time step of 0.001
in LJ units. The SSp system consisted of 1000 particles,
with the time step of 0.0005 in reduced units. The follow-
ing critical parameters, averaged from literature sources,
were used for the LJ system: �c ¼ 0:314, Tc ¼ 1:31, and
Pc ¼ 0:13. The temperature corresponding to cV ¼ 2:0
was determined from the dependence of the isochoric
heat capacity on temperature along the isochors. The dis-
persion of the longitudinal collective excitations!LðqÞ has
been calculated for both LJ and SSp systems using the
same approach as in Ref. [15]. The dispersion has been
analyzed at different temperatures along several isochors.

We analyze the temperature dependence of ZðtÞ and
hr2ðtÞi along several isochors and isobars. We show ZðtÞ,
hr2ðtÞi and its second derivatives at several temperatures for
both LJ and SSp systems in Fig. 1, and observe that they
qualitatively change with temperature. ZðtÞ is oscillatory at
low temperature, but decreases monotonically at high. We
propose that this qualitative change can be used as a
mathematically rigorous criterion to define the Frenkel line.

More specifically, the presence of both decreasing and
increasing parts of ZðtÞ implies that the projection of
velocity on the direction of motion changes its sign on
average, i.e., it signifies the presence of an oscillatory
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FIG. 1 (color online). Time dependences of VAF ZðtÞ for the LJ
liquid (P ¼ 200, pressure is in the LJ units) (a) SSp systems with
n ¼ 12 (c) and n ¼ 36 (d) (� ¼ 1, density is in the standard soft-
sphere units), and the second derivative of the mean-square dis-
placement (b) for the LJ liquid (P ¼ 200, pressure is in the LJ
units). Insets in (a),(c), and (d) showdetailed pictures; inset in panel
(b) shows time dependences of mean-square displacement. The
vertical arrows correspond to the disappearance of oscillations.
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component of motion. Consequently, the temperature at
the Frenkel line can be naturally chosen at the ‘‘critical’’
temperature at which minima and maxima of the function
in question disappear. We observe that the second deriva-
tives of hr2ðtÞi have the same functional time dependence
as ZðtÞ, consistent with Eq. (2). The coincidence of
@2=@t2hr2ðtÞi and ZðtÞ and their temperature evolution
serves as a self-consistency check in our calculations.

The line corresponding to the change of dynamics
according to the above criterion is shown in Fig. 2.
In Fig. 2(a) we observe that the temperature of the calcu-
lated line is about 1.5–1.7 times lower than the line
approximately defined from one of the previous criterion,
� � �0. The difference is related to the uncertainty in
determining high-frequency longitudinal and transverse
oscillations on the basis of visual analysis of trajectories
made in Refs. [7,12,13]. We also note that for the LJ

system at high pressure, the temperature of the Frenkel
line exceeds the melting temperature by a factor of 4–5 on
the isobar.
Importantly, we observe in Fig. 2(b) that the calculated

line perfectly agrees with all other experimental and theo-
retical criteria of the Frenkel line proposed previously [7].
We therefore find that the phase diagram of the LJ system
contains a sharp boundary separating the states of the rigid
liquid and nonrigid gaslike state.
For both LJ and SSp systems, we study the dispersion of

the longitudinal collective mode !LðqÞ. We detect PSD in
both LJ and SSp systems at low temperature, and find that
PSD disappears on temperature increase quite close to the
calculated Frenkel line. The existence of PSD in the SSp
system at low temperatures (Fig. 3) is an important result.
It means that the presence or absence of PSD is not related
to the continuation of the boiling curve and the critical
point whatsoever, contrary to the previous discussions
[6,15]. Rather, PSD and its crossover are purely dynamic
in origin.
In Figs. 4 we show the calculated Frenkel line on the

phase diagrams for the SSp system with n ¼ 6, 12, and 36.
We note that the terms gas and liquid are not appropriate
for the SSp system with no vapor-liquid coexistence curve;
nevertheless, the qualitative change of the particle dynam-
ics from the liquidlike to gaslike takes place in this system
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FIG. 3 (color online). Dispersion curves !ðQÞ (blue circles
with bars) for the simulated soft-sphere systems with n ¼ 12 at
low (a) and high (b) temperatures. The inset shows the longitu-
dinal velocity CL ¼ !=Q vs wave vector Q dependence for the
case (a), illustrating the PSD. Thick solid lines in panels (a) and
(b) and the triangle in the inset correspond to the adiabatic sound
velocity at Q ¼ 0.
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FIG. 2 (color online). (P, T) phase diagram of the LJ liquid in
the relative critical coordinates. Panel (a) compares previous
criteria of the Frenkel line from Ref. [7]. The shaded region
covers all experimental and calculated curves from Ref. [7],
together with the Frenkel line calculated in this work. Panel
(b) compares positions of the Frenkel line found in this work
with calculated and experimental curves and points defined by
different criteria (see Ref. [7] and references therein). Black
circles correspond to the disappearance of PSD under heating
calculated in the present work. Red dashed line in panel (b)
shows the dynamic line proposed in Ref. [15]. In all cases I
corresponds to the rigid liquid state and II to the nonrigid gaslike
state.
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too. Importantly, we observe that the dynamic crossover
line calculated on the basis of ZðtÞ perfectly coincides with
the line that corresponds to cv ¼ 2kB, one of the main
criteria of the Frenkel line [7]. Indeed, as discussed earlier
[7,22,23], liquid specific heat reduces from 3kB to 2kB
when � � �0, corresponding to the potential energy of
shear modes becoming zero due to the loss of shear modes
at all frequencies. The perfect coincidence of the crossover
lines calculated on the basis of ZðtÞ and cv ¼ 2kB serves as
an important self-consistency check of our theory of the
dynamic crossover at the Frenkel line. We also note that the
calculated line corresponds to the appearance of PSD at
low temperature [see Fig. 4(b)].

Interestingly, the increase of the exponent n results in the
narrowing of the P, T region where the quasiharmonic
rigid liquid exists. For the SSp system, the ratio of the
temperature at the Frenkel line to that at the melting line
on the isobar is 11.2 for n ¼ 6; 5.3 for n ¼ 12, and 2.2 for
n ¼ 36 (see Fig. 4). This behavior is consistent with our
earlier findings [7,12] that for n � 50–60, the line corre-
sponding to cv ¼ 2kB moves under the melting line; i.e.,
the region of existence of quasiharmonic rigid liquid above
the melting line disappears. It should be mentioned that for
large values of exponents governing the repulsion n the
criterion of the dynamic crossover based on ZðtÞ no longer
applies. The oscillation amplitude becomes extremely
small for n > 50, and the oscillations become irregular
themselves. Physically, this means that particles of the fluid
spend most of their time outside the field of action of the
potential, and move ballistically as in a gas. This is also the
reason for a slight discrepancy of the Frenkel line calcu-
lated from ZðtÞ and cv ¼ 2kB for n ¼ 36 [see Figs. 4(c)].
As discussed earlier [7,12–14], the Frenkel line and

related physics bear no relationship to various versions of
a ‘‘thermodynamic’’ continuation of the boiling line, the
Widom line. This is particularly apparent in our finding
that the dynamic crossover at the Frenkel line, including
the crossover of PSD, exists in the SSp system where the
liquid-gas transition and the critical point are absent
altogether. Furthermore, as is seen in Fig. 2(b), the
Frenkel line for the LJ system lies in the range of tempera-
tures that are lower than the critical temperature, and starts
from the boiling region at temperature T � 0:7–0:8Tc.
In relation to this, we note that at temperature higher
than 0:75–0:85Tc, a fluid, as a rule, does not possess a
cohesive state (the dependence of the free energy on vol-
ume has no minimum), implying that the upper region of
the boiling curve should be rather considered as the gas-gas
transition (see, e.g., Ref. [24]).
As mentioned above, there has been a recent attempt

[15] to determine the dynamic line for supercritical Ar on
the basis of molecular dynamics simulations of the PSD [it
is shown in Fig. 2(b) as a dashed line]. The line proposed in
Ref. [15] is notably different from the Frenkel line calcu-
lated in our work. The PSD is not a fundamental phenome-
non on its own: as was discussed a long time ago [8], the
existence of PSD is simply the result of the presence of
high-frequency transverselike collective excitations. These
excitations disappear at the Frenkel line. The disappear-
ance of PSD is therefore only one of many consequences of
the dynamic crossover at the Frenkel line rather than its
origin. The PSD in the SSp system additionally points to
the inconsistency of using the combination of thermody-
namic continuation of the boiling line. Moreover, quanti-
fying PSD in molecular dynamics simulations suffers from
large uncertainty, and cannot be, in our view, used as a
convenient criterion to establish the location of the
dynamic line. It suffices to note that calculated parameters
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FIG. 4 (color online). (P, T) phase diagrams of the simulated
soft-sphere systems with n ¼ 6 (a), n ¼ 12 (b), and n ¼ 36 (c),
comparing the location of the Frenkel lines with the lines
calculated from the criteria cV ¼ 2kB. The black circle corre-
sponds to the calculated in present work disappearance of PSD
under heating. In all cases I corresponds to the rigid liquid state
and II to the nonrigid gaslike state.
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at which PSD disappears for Ar, calculated by the same
authors [6,15], differ widely. Indeed, at T ¼ 3:8Tc, PSD
disappears at P< 80Pc according to Ref. [6], and at
P< 30Pc according to Ref. [15].

In summary, we proposed a criterion to locate the
dynamic Frenkel line on the phase diagram of fluids that
is both mathematically rigorous and convenient for simu-
lations. The calculated Frenkel line for the LJ and SSp
systems coincides with various experimental data for rare-
gas fluids as well as with the data calculated on the basis of
other important physical criteria such as cv ¼ 2kB. For the
LJ system, the Frenkel line starts from the boiling curve
at T � 0:7–0:8Tc. The region of the rigid liquid shrinks
with the increase of the exponent of the repulsive part of
interparticle potential. The new criterion opens an exciting
possibility to calculate and map the dynamical line for
various liquids with different types of structure and
interactions.
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