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Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo
activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid
coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating
ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an
effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening
dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically
compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics,

domain topologies, and coexistence densities.
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Active matter—materials whose constituents convert
energy from an internal or external fuel depot into
work—has gathered significant attention over the last
decade [1-3]. One important paradigm for active matter
is a fluid of self-propelled particles. These can be natural,
e.g., a bacterial or algal suspension [3,4], or man made,
such as colloidal particles rendered motile through chemi-
cal reactions [5-9]. Such colloids swim at roughly constant
speed, with a swimming direction that relaxes continuously
by rotational diffusion; this defines ‘“‘active Brownian
particles’” (ABPs).

Active matter represents an inherently far-from-
equilibrium system. This causes a range of nontrivial behav-
iors, such as giant density fluctuations [10-13], rectification
of motion [14-17], and unexpected phase separations
[18-24]. Of particular relevance to us is the prediction that
a suspension of motile particles with a density-dependent
swim speed v(p), which decreases with increasing density
due to crowding, can phase separate even without attractive
interactions or orientational order [25,26]. This effect relies
on the fact that both run-and-tumble bacteria [25,27], and
ABPs [26], accumulate in regions where they move slowly.
A positive feedback, whereby a local density increase leads
to a local slowdown, causes further accumulation. This
motility-induced phase separation has been confirmed in
simulations (resembling those in the left panel of Fig. 1)
[28,29] and experiments [24] and shares many features
with the equilibrium gas-liquid coexistence of passive
attractive particles, even though this feedback mechanism
is completely absent in systems obeying detailed balance.
In ABP systems, a decreasing v(p) effectively arises from
an increased collision frequency in dense regions. As shown
in Ref. [29] (see further Fig. S1 of [30]), phase separation is
described by a gas-liquid-like phase diagram where the
traditional role of the inverse temperature is played by
the Péclet number, Pe = 3v,7,/0, where v, = v(0) is the
propulsion speed of an isolated ABP, ¢ its diameter, and 7,
its orientational relaxation time.
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While previous studies [28,29] have focused on steady-
state properties, in this Letter we investigate how far the
correspondence between thermal and athermal phase sepa-
ration extends to dynamics by developing a continuum
description for the structural evolution. We explicitly
coarse grain the microscopic dynamics into an evolution
equation for the density field p(r). This contains an effec-
tive diffusivity and chemical potential that stem from a
functional form of v(p) suggested by kinetic arguments,
and validated by our direct ABP simulations. Solving our
continuum equation numerically we find domain growth
dynamics and morphologies in very good accord with
large-scale direct ABP simulations, while the efficiency
of the continuum approach allows a two-decade extension
to the simulated time window. Although the effective
chemical potential violates detailed balance at square-
gradient level, in practice we find the effects of this viola-
tion to be rather limited; our striking conclusion is that
even the dynamics of activity-induced phase separation in
ABPs (a manifestly far-from-equilibrium effect) is quanti-
tatively captured by a continuum model that only weakly
transgresses the boundaries of equilibrium statistical
thermodynamics.

Derivation of the dynamical equation.—As derived in
Ref [25] and generalized in [26], the coarse-grained den-
sity field p for ABPs with density-dependent swim speed

obeys
0p =~V -{-Dlp)pu +2D(IpA} (1)

Here D(p) is an effective one-body diffusivity, u an effec-
tive chemical potential, and A a noise vector whose
Cartesian components A; obey (A;(r, )A;, 1)) =
8;;6(r — r')8(r — '). The multiplicative noise is Itd type
as derived in Ref [25], which furthermore showed that
when v(p) is a strictly local function,

u(p) = po(p) = Inp + Inv(p). (2)
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Eq. (13)

FIG. 1 (color online). ABP (left) and continuum (right) simu-
lations with particle area fractions ¢ as indicated. Snapshots are
taken at equal time ¢t = 5007, and shown at the same spatial
scale. Inset numbers indicate the area fraction of the dense phase,
measured through numerical integration of P(¢) (Fig. 4).
The color bars run from ¢ = 0 (black) to ¢ =1 (yellow or
light gray).

As shown previously [25], the local term w can be written
as the functional derivative of an effective bulk free energy

Fo = [ folp)dr, where
fo=pling = 1) + [ Infu(wldu 3)

The first term resembles the standard ideal entropy
of a passive fluid and the second its excess free-energy
density. The latter is of similar form to an enthalpic
attraction (despite its completely different physical ori-
gins) and causes bulk phase separation for steeply enough
decreasing v(p).

While the above treatment predicts the existence of
phase separation, an extension to nontrivial order in den-
sity gradients is necessary to stabilize domain walls and
thereby enable the study of phase separation dynamics. We
thus assume that v is not strictly local, but that ABPs
sample p on a length scale significantly greater than the
interparticle spacing. Therefore we set v = v(p) with
p(r) =p+ ¥*V?p and y(p) a smoothing length: this
represents the leading order nonlocal correction to p

allowed by rotational invariance. Replacing v(p) by v(p)
and assuming that vy is proportional to the persistence
length of ABP trajectories (i.e., y(p) = vo7,v(p), where
v, is of order unity) we find

w =y — k(p)V:p + O(V*p), (4)

K(p) = —737%(/})%@- (5)
p
Thus our microscopic arguments point to a specific form
of the square gradient term in (4), different from the
phenomenological assumption of constant « (e.g., [19]).
The gradient structure of our effective chemical poten-
tial at first sight resembles that for an interfacial free
energy density in passive systems, fi, = (x/2)(Vp)>.
However, on functional differentiation to obtain w, the
latter would lead not to (4) but to

v 2
= o — k(p)V?p — d';fop) ( ; r, (6)

Our microscopic analysis hence demonstrates that, even
when the local contribution wy maps onto an effective free
energy [25], square-gradient terms in active systems gen-
erally do not.

Finally, to emulate the physics of excluded volume
interactions between ABPs at the continuum level, we
add a stabilizing contribution to the effective free energy
density, fo— fo * frp, that increases sharply above a
threshold density p;. We choose

frep = krep®(p - pt)(p - pt)4 (7

with @(x) the step function and k., a phenomenological
parameter. While the form of f,,, somewhat affects the
phase boundaries and the coexistence densities (Fig. S2 in
[30]), we have checked that the structure and dynamics of
the phase-separating system, which are our focus here, are
not sensitive to this choice.

Microscopic estimate of density-dependent speed.—On
time scales larger than the orientational relaxation time 7,,
an isolated ABP undergoes a persistent random walk of
effective step length €, = vy7,. At nonzero density, colli-
sions slow particles down, giving an effective propulsion
speed v(p) < v,. To estimate this, assume that each parti-
cle has velocity v, between collisions, but is effectively
stalled for the duration 7, of each collision event. Since
collisions do not change 7, itself (a picture that may
change significantly if hydrodynamic interactions are
added [31]), the length €(p) traveled during 7, obeys
€(p) = vy(7, — n.7.) where n, is the average number of
collisions during 7,. This leads to an effective propulsion
speed v(p) = €(p)/7, = vo(1 — n.7./7,). We now write
n. = 7,./(tmp + 7.), where Typ is the mean free time
between collisions, so (myg + 7.) is the time between
the starts of two adjacent collision events. Furthermore
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assuming that 7y >> 7., which is valid at low densities,
we get

v(p) = o1 = 75) = vyl ~ v rep)

TMF
where we have used a standard expression Ty =
(vopo,)~! from kinetic theory, with o, a scattering cross
section. Finally, within the density range where this
collision-hampered random walk picture remains valid,
the effective diffusivity D(p) obeys in two dimensions [26]

v (p)7,
2

where Dy = D(0) = v3r,/2.

Figure 2 shows D(¢) and v(¢) as functions of the
particle area fraction ¢ € [0.01, 0.9] obtained from ABP
simulations in the one-phase region (Pe = 40, see further
Fig. S1 in [30]). Both measured quantities follow very
closely the predictions of (8) and (9). Furthermore, the
ratio D/v? coincides with the predicted value of 7,/2 for
area fractions as high as ¢ = 0.7. Fitting the data for v(¢)
allows us to estimate the ratio 7Typ/7, and leads to
Tvp/T. = ¢~ '; thus, the assumption 7y >> 7. should
fail for ¢ = 0.5, which is indeed where the ratio between
D and v? starts to deviate from its zero-density value.
We also note that the optimized fitting parameters a =
1.05 and b = 1.04 in v(¢) = vo(1 — ad) and D(¢) =
Dy(1 — be)?* are nearly identical, as expected from the
kinetic reasoning above, and as was recently predicted
theoretically [32] and observed for a similar ABP model
[28]. We finally note that the collision time 7. is in prin-
ciple an increasing function of Pe, leading to a Pe depen-
dence in the fitting parameters a and b. However, as shown

D(P) = = DO(l - UOO-STCP)Z’ (9)

25 T T T ]
r L) 7
20 — + D(¢)/10 —
L +— 10%(D/Vv?) -
1 - —
10 -
i 10%(z/2) A
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FIG. 2 (color online). Density-dependent swim speed v(¢)
(black symbols) and diffusivity D(¢) (red or light gray symbols),
and the ratio D/v* (blue or dark gray curve and symbols)
obtained from an ABP simulation at Pe = 40. The black and
red curves show the best fits to the functions vo(1 — a¢) and
Dy(1 — be)?, respectively, with the optimized values a = 1.05
and b = 1.04. Dashed lines show the predicted zero-density
values. Plotted quantities are in Lennard-Jones units ¢ and
715, as defined in [30].

in Fig. S3 of [30], this dependence is weak throughout the
range 40 = Pe = 100 considered here. We thus assume
that v(¢) and D(¢) obtained from the (homogeneous)
Pe = 40 system are transferable to the Pe = 100 case
where our kinetic studies will be conducted.

Mapping between continuum and ABP models.—To
allow direct comparison with particle-based ABP simula-
tions we first rewrite the continuum model in terms of a
dimensionless variable ¢ = p/p, where py = (vyo,7.)"!
so that v(¢) = vy(1 — ¢). Matching to the ABP results of
Fig. 2 shows & =~ 1.05¢ where ¢ is the area fraction of
ABPs. For our purposes it is enough to ignore this small
difference and use ¢ to denote both quantities. We will
furthermore use A = Dy/v, and 7,/2 = Dy/v} as our
units of length and time, respectively, for which it can be
shown that vqy = Dy = 1. In these units, Egs. (2), (3), and
(7) furthermore become

mo = In[¢(1 — ¢)] (10)
Mrep = 4krep®(¢ - ¢t)(¢ - ¢t)3» (11)

M= ot Mpep — Ko(l — d’)vzd)’ (12)

where ¢, = p,/po and ko = (voyo7,)* = 4v3; since the
order-unity factor vy, is unknown, we treat k as a density-
independent free parameter (see [30] for parameter values).
Finally, Eq. (1) becomes

b=V {¢<1 — PV~ 2801 - ¢)2N51A} (13)

which we solve numerically using standard methods.
The results are compared to large-scale (N =5 X 10°)
Brownian dynamics simulations of repulsive ABPs using
the LAMMPS package [33] (for model details, see [30]). The
comparison is achieved by constructing a density field from
the ABP simulations through numerical coarse graining.
With our choice of units, Eq. (1) fixes directly the noise
term in (13), with N, being the number of ABPs in a cell of
side A at nominal area fraction unity, a number which is
readily accessible from the known parameters of the ABP
simulations. Thus, since our choice of units sets an absolute
scale of length and time matched across both simulations
(and, as noted above, the results are insensitive to k.p), Ko
remains the sole fit parameter in our comparison.
Numerical results.—In Fig. 1, intermediate-time snap-
shots of the phase-separating system at four different par-
ticle area fractions are shown, obtained through solving the
continuum model and by explicit simulations of ABPs.
Clearly, the continuum model describes the domain struc-
ture very well, particularly in the middle of the density
range; since the binodal is imperfectly reproduced, devia-
tion at the extremes is expected. Qualitatively, the observed
domain topologies resemble an equilibrium spinodal
decomposition [34,35], starting from isolated domains of
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FIG. 3 (color online). Time-dependent coarsening length L(z)
obtained from the inverse first moment of the structure factor
at ¢ = 0.5. The dashed lines indicate the fitted exponents
a =0.27(9) (ABPs), a = 0.28(7) (continuum model), and
a = 0.27(9) [continuum model with detailed balance (DB)
term]. The latter curve has been vertically shifted for clarity.

dense phase at low ¢, via a near-bicontinuous structure at
¢ = 0.6, to isolated droplets of dilute phase in a dense
matrix at still larger ¢. Furthermore, the areas occupied
by the two phases agree well with the ABP simulations.
The quantitative agreement reported here is easily
destroyed by deviating from the parameter mappings
delineated above, for instance by setting D(¢) to a con-
stant. We finally note that the noisy local dynamics
observed in ABP simulations is qualitatively captured by
the continuum model using the noise strength determined
by our mapping (see movies in [30]).

Turning to kinetics, Fig. 3 shows the time evolution of
the characteristic length scale L(¢) (as defined in [30]) for
ABPs and for the continuum model. In equilibrium
systems L(f) usually exhibits power-law coarsening,
L(r) ~ t*, where the growth exponent a depends on the
kinetic universality class. For phase separations with dif-
fusive transport of the order parameter and where hydro-
dynamic interactions can be neglected, one expects
a = 1/3 [36,37]. Interestingly, our continuum model
instead exhibits an exponent « = 0.28, close to the 0.255
previously reported in Ref. [29] (and later corrected to
0.272 [38]). As well as giving the same scaling exponent,
the ABP and continuum curves connect almost perfectly
onto each other, demonstrating the quantitative accuracy of
our continuum description. We finally note that the con-
tinuum theory enables us to extend the simulated time
window by two decades beyond that possible for direct
ABP simulations.

A more detailed analysis would be needed to understand
the exact nature of this subdiffusive domain growth, and
indeed to confirm whether it represents a true asymptotic
behavior (as observed for the Cahn-Hilliard equation with
a density-dependent mobility similar to the one used here
[39]) or a transient crossover (due, for example, to the high
noise level [37]). Notably, however, detailed balance

L
6l — ABPs _|
— Eq. (13)
L — Eq. (13) + DB term g
— 4= —
£
D- - -
21— —
0
0 0.2 0.4 0.6 0.8 1

¢

FIG. 4 (color online). Probability distribution P(¢) of the local
area fraction ¢ obtained from ABP simulations (black curve),
from the continuum model as written (red or light gray curve)
and with detailed balance restored (blue or dark gray curve).
P(¢) was sampled over quadratic coarse graining areas of side
length 0.8A at ¢ = 0.5 and averaged over the time window
5007, =t = 3500r,.

violations do not seem to be responsible for the exponent
anomaly: a repeat run with detailed balance restored as per
Eq. (6) shows the same exponent within the numerical
accuracy (Fig. 3).

To further quantify the structure, we plot in Fig. 4 the
probability distribution P(¢) midrun during coarsening.
Given the previously noted discrepancy between the coex-
istence densities, the agreement in shape between the P(¢)
curves is good. Figure 4 also shows that detailed balance
violations at square-gradient level slightly shift the coex-
istence densities, marginally improving agreement with
the ABP curve. This shift in binodals is not a numerical
artifact, and its underlying physics will be pursued further
in a separate publication; in the context of phase separation
kinetics, however, the effects of detailed balance violations
remain small. These findings are surprising: detailed bal-
ance violations enter our model only via gradient terms,
which for systems with detailed balance have no effect on
bulk phase equilibria yet are crucial in determining inter-
facial structure and hence coarsening behavior. Here we
find almost the opposite.

Conclusions and outlook.—By explicit coarse graining
we have derived a stochastic continuum model for active
Brownian particles with repulsive collisional interactions.
We have shown that this model quantitatively describes
their phase separation dynamics, with essentially a single
fit parameter. Although at square gradient level the model
no longer respects detailed balance, in practice detailed
balance violations have little influence on the observed
microstructures and coarsening dynamics. It is surprising
that the kinetics of a phase separation induced by an
inherently nonequilibrium process is quantitatively so
similar to that of a purely thermodynamic system—albeit
one with a carefully chosen free energy, mobility, and noise
level. This encourages further work on the fundamental
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connections between equilibrium and nonequilibrium
thermodynamics in the context of active matter. This
seems essential if the rich phenomenology seen experi-
mentally in both ABPs [5,7,9,20,24] and bacterial systems
[12,14-16,19] is to be understood.
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