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We show that atomic Fermi mixtures with density and mass imbalance exhibit a rich diversity of scaling

laws for the quasiparticle decay rate beyond the quadratic energy and temperature dependence of

conventional Fermi liquids. For certain densities and mass ratios, the decay rate is linear, whereas in

other cases, it exhibits a plateau. Remarkably, this plateau extends from the deeply degenerate to the high

temperature classical regime of the light species. Many of these scaling laws are analogous to what is

found in very different systems, including dirty metals, liquid metals, and high temperature plasmas. The

Fermi mixtures can in this sense span a whole range of seemingly diverse and separate physical systems.

Our results are derived in the weakly interacting limit, making them quantitatively reliable. The different

regimes can be detected with radio-frequency spectroscopy.
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Introduction.—There are many systems in nature com-
posed of two different types of fermions with either different
concentrations or different masses, such as electron-ion
plasmas, liquid metals, spin-polarized conductors, and
certain cases of nuclear matter. The temperature in these
systems usually lies in a characteristic range with respect to
the Fermi temperatures of the two components. For ex-
ample, in spin-polarized conductors, both spin states are
fully degenerate, while in hot electron-ion plasmas, both
are fully classical. An interesting class of systems appears
when one of the components is degenerate while the other is
classical. This occurs, for example, in spin-polarized Fermi
gases when the minority component is classical [1,2], liquid
metals, and in warm dense matter, a type of plasma where
the ions are classical but the electrons are close to degener-
acy [3]. We show in this Letter that two-component Fermi
mixtures of ultracold atoms provide the possibility for the
first time to access all of these disparate regimes within a
single experimental system. For example, mixtures of 6Li
and 40K have already been created [2] where the 6Li atoms
are degenerate but where the 40K atoms can be either above
or below their Fermi temperature. In these mixtures, we
demonstrate that various regimes of temperature and con-
centration difference give rise to a variety of energy and
temperature scalings of the lifetime of the majority quasi-
particles that are analogous to several of the very different
Fermi mixtures in nature. Contrary to plasmas or the elec-
tron gas, which in general are extremely complex to
describe, ultracold atomic gases interact via a short range
interaction which is accurately characterized by the scatter-
ing length, and the effects discussed in this Letter are all
realized in the weak coupling regime. This means that the
quasiparticle lifetime is described by a compact and reliable
expression involving the Lindhard function, which never-
theless contains all the different physics in various limits and
the interpolations between them.

The reason for the appearance of these scaling laws is
that in a system with two types of atom (which we will
denote by ‘‘"’’ and ‘‘#’’) of different masses and/or den-
sities, the Fermi energies of the two species are in general
unequal, leading to the existence of two energy (and tem-
perature) scales. We will assume here that "F# � "F". The
difference can be due to a large density imbalance n# � n"
with equal mass or large mass imbalance m# � m" with
equal density. This results in an intermediate-energy
regime "F# � " � "F" which increases in size with mass

or density imbalance. While the quadratic behavior of
Fermi liquids is due to the effect of Pauli blocking of
both species [4], the key property of this intermediate
regime is that the Pauli blocking of the # atoms is unim-
portant, so that the phase space for interspecies scattering
depends only on the " atoms. We will show that for the
n# � n" equal mass mixture, the Pauli blocking of " atoms

results in a linear decay rate in temperature, while for a
m# � m" equal density mixture, energy conservation

restricts the phase space for scattering of the " atoms to a
narrow region around the Fermi surface, making Pauli
blocking of the " atoms irrelevant, leading to a
temperature-independent decay rate. The effects on the
lifetime due to the modification of Pauli blocking in
spin-polarized Fermi systems were known in spin-
polarized liquid 3He and ferromagnetic metals [5–7]. For
example, they are responsible for the observed zero tem-
perature damping of the transverse spin dynamics in spin-
polarized 3He [5,6]. Experimentally, Fermi mixtures with
density imbalance [8,9] or mass imbalance [10–12] have
been created, which raises the prospect of observing the
effects we discuss here in the near future using, for
instance, radio-frequency (rf) spectroscopy.
Model.—We consider a homogeneous gas of two species

of fermions denoted � ¼" , # with masses m" � m# and
densities n" � n#, from which we define the Fermi
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momenta kF� � ð6�2n�Þ1=3. The key quantity we study in
this Letter is the decay rate 1=�p of the " quasiparticles with
momentum p and energy "p". To lowest order in the

scattering processes, the decay rate can be written as [13]

1

�p
¼ 2�U2

X
k

X
q

�ð"p" þ "k# � "p�q" � "kþq#Þ

� ½nk#ð1� nkþq#Þð1� np�q"Þ
þ ð1� nk#Þnkþq#np�q"�; (1)

where nk� ¼ ðe��k� þ 1Þ�1 is the Fermi function. We have
defined �p� ¼ "p� ���, with �� the chemical potential,

and� ¼ 1=T, with T the temperature (we set kB ¼ @ ¼ 1).
The energy is "p� ¼ p2=2m�, where m� is the effective

mass. The parameter U is the effective interaction between
the " and the # atoms, and we have neglected interactions
between identical atoms for simplicity. In the strong cou-
pling regime, one can extract the value of the effective
mass and U from Monte Carlo, variational, and thermody-
namic arguments [14–16]. We will mostly work in the
weak coupling regime, where we have U ¼ 2�a=mr and
wheremr ¼ m"m#=ðm" þm#Þ is the reduced mass and a the
scattering length for the interaction between the two atom
species [17].

For analytic investigation, it is convenient to rewrite
Eq. (1) in terms of the imaginary part of the Lindhard
function of the # atoms given by [18]

Im�#ðq;!Þ¼��
Z d3k

ð2�Þ3 ðnk# �nkþq#Þ�ð!�"kþq# þ"k#Þ:
(2)

To do this, we first recast the � function in Eq. (1) in
the form �ð"p" þ "k# � "p�q" � "kþq#Þ ¼

Rþ1
�1 d!�ð!�

"p" þ "p�q"Þ�ð!� "kþq# þ "k#Þ. We also use the Fermi

function identities nk#ð1� nkþq#Þ ¼ ðnk# � nkþq#Þ=
ð1� e��!Þ and ð1�nk#Þnkþq# ¼ðnk#�nkþq#Þ=ðe�!�1Þ,
with ! � "kþq# � "k#. Finally, the angular integral over q
is
R
�q�ð!� "p" þ "p�q"Þ ¼ 2�m"=pq with �pq=m" �

q2=2m" � ! � pq=m" � q2=2m", and we obtain

1

�p
¼�m"jUj2

2�2p

Z 1

0
dqq

Z !þ

!�
d!Im�#ðq;!ÞFð!;"p";�"Þ;

(3)

where Fð!; "p"; �"Þ ¼ ð1þ e�ð!��p"ÞÞ�1ð1� e��!Þ�1 þ
ð1þ e��ð!��p"ÞÞ�1ðe�! � 1Þ�1 and !	ðqÞ ¼ 	pq=m"�
q2=2m".

Before proceeding, let us briefly discuss the difference
between the situation considered here and the usual qua-
dratic Fermi liquid behavior. In a conventional Fermi
liquid, the low-energy condition �p ¼ "p �� � "F and

T � "F ensures that one can use Im�#ðq;!Þ / !=q in

Eq. (3), leading to quadratic scaling of the decay rate

with energy and temperature. Here, the Lindhard function
of the # atoms has a different behavior in the intermediate
regime, which will result in different power laws.
Zero temperature.—In the following, wewill take �p" �0

without loss of generality since �pð�Þ is an even function for
j�j � "F". In this case, the backscattering term [the second

term in Eq. (3)] vanishes at T ¼ 0. The integration region in
Eq. (3) is determined by three conditions: from the Bose
factors, we have 0 � ! � �p"; ! � !þðqÞ and 0 � q �
2p. Using the T ¼ 0 expression for the Lindhard function
[18] lm�#ðq;!Þ ¼ �m2

# "F#=4�q½�ð1� v2�Þð1� v2�Þ�
�ð1� v2þÞð1� v2þÞ� with v	 ¼ m#!=qkF# 	 q=2kF#, we
obtain

1

�p
¼jUj2m"m2

# "F#
8�3p

Z 2p

0
dq

Z �p";!þ

0
d!½�ð1�v2�Þð1�v2�Þ

��ð1�v2þÞð1�v2þÞ�: (4)

(i) The low-energy regime �p" � "F# � "F". When the

energy is small compared to both Fermi energies, we can
use Im�#ðq;!Þ ¼ �m2

#!=4�q, which gives

1

�p
¼ jUj2m"m2

# kF#
8�3p

�2
p": (5)

This is the usual quadratic dependence of the decay rate on
excitation energy characteristic of a conventional Fermi
liquid. Indeed, when m# ¼ m", we recover the well-known
expression for the damping rate of a quasiparticle at
T ¼ 0 [18].
(ii) The intermediate regime "F# < �p" < 	"F# � "F"

with 	¼4ðkF"=kF#�1ÞðkF"=kF#þm"=m#Þ=ð1þm"=m#Þ2,
where 	"F# is defined as the ! coordinate of the intersec-

tion of the !þ and 
� ¼ �1 curves (for this region to
exist, apart from the main effect of mass imbalance, we
must have 	 > 1, which also sets a condition on the density
imbalance). We obtain

1

�p
¼ jUj2m"m2

# nF#
2�p

�
�p" � 2

5
"F#

�
: (6)

The linear dependence of the decay rate is also charac-
teristic of marginal Fermi liquids [19], although the phys-
ics there is quite different and the linear scaling is due to
strong spin fluctuations. In Fig. 1, we plot the decay at zero
temperature as a function of the excitation energy. We have
chosen the parametersm#=m" ¼ 173=6, corresponding to a
mixture of 173Yb and 6Li atoms [10], and kF"=kF# ¼ 2.
These parameters give "F"="F# ¼ 115, corresponding to a

large regime of intermediate energies. Both the usual qua-
dratic and linear scalings are clearly visible in Fig. 1.
Nonzero temperature, degenerate case.—In this regime,

we have 0< T � TF" and we consider the case �p" ¼ 0.

From the thermal distribution functions in Eq. (3), it fol-
lows that the integrand is significant only in the range
j!j & T. Since T � TF", we can approximate Eq. (3) by
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1

�kF"
¼ � jUj2m"

2�2kF"

Z 2kF"

0
qdq

Z 1

�1
2Im�#ðq;!Þd!

ðe�! þ 1Þð1� e��!Þ :

(7)

(i) T � TF#. In this case, we can use the zero tempera-

ture, low-energy expression Im�#ðq;!Þ ¼ �m2
#!=4�q to

obtain

1

�kF"
¼ jUj2m"m2

# kF#
8�kF"

T2: (8)

Here, the system has the quadratic Fermi liquid behavior
and we recover the standard result when TF# ¼ TF" [18].

(ii) TF# � T � TF". The gas of # atoms is now classical,

and we can use the expression Im�#ðq;!; TÞ ¼
��n#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m#�=�

q
e�!2m#�=2q2e�q2�=8m# sinhð�!=2Þ=q [16].

The decay rate can then be written as

1

�kF"
¼ 2jUj2m"m#n#T

�3=2kF"
I

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F"=2m#T

q �
(9)

with

IðtÞ �
Z t

0
dye�y2

Z 1

�1
dx

e�x2=4y2

coshx
: (10)

We now discuss two important special cases of Eqs. (9) and
(10). First, we consider the case of a highly polarized
system of two spin states of the same atom, i.e., m" ¼
m# ¼ m and n# � n". In this case, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F"=2mT

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

TF"=T
q

� 1. Using Ið1Þ ¼ ffiffiffiffi
�

p
ln2, we obtain

1

�kF"
¼ 2 ln2

jUj2m2n#
�kF"

T: (11)

In Fig. 2, we plot the decay rate 1=�kF" as a function of

T for several density imbalances. In Fig. 2(a), we see the
quadratic low temperature behavior. Note that the curves
for kF"=kF# ¼ 3, 6, 10 overlap in this range. In Fig. 2(b), we
see the appearance of linear scaling. The range of linear
temperature scaling increases with the density imbalance.
The second case we consider is that of an equal density

mixture of heavy and light atoms (m" � m# and n �
n" ¼ n#), so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F=2m#T

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TF#=T

q
� 1. Since IðtÞ ’ffiffiffiffi

�
p

t2ð1� t2Þ for t � 1, we find that

1

�kF"
¼ jUj2m"n#kF"

�

�
1� TF#

T

�
; (12)

which shows that the decay rate is constant to leading order
in TF#=T. This peculiar behavior can be understood as

follows. Since T � TF", we have vth# � vF" with vth# ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=m#

q
and vF" ¼ kF"=m", and the # atoms are moving

very slowly compared with the " atoms. The decay rate is
then dominated by the motion of the " quasiparticle: ��1 ¼
n#�scvF", where �sc is the scattering cross section. Using

�sc ¼ jUj2m2
" =� for m# � m" [16], we get ��1 


jUj2m"n#kF"=�, which is precisely the leading constant

term of the above expression. This constant term in
Eq. (12) is well known in the theory of doped semicon-
ductors or dirty metals since there the heavy atoms corre-
spond to the static impurities [20]. In Fig. 3, we plot the
decay rate of an " excitation with momentum kF" as a

function of temperature. The emergence with increasing
mass ratiom#=m" of a plateau where the rate is independent
of temperature is clearly visible in Fig. 3(a). Note that this
plateau extends to temperatures well above TF" for large
mass ratios even though the simple kinetic argument
breaks down above TF" since we then have to take into

account the changes to the " Fermi surface which also
affect the scattering rate. Instead, as we show below, the
reason the plateau continues to higher temperatures is
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FIG. 2 (color online). Decay rate 1=�kF" in units of
jUj2m3"2F#kF#=8�

3kF" as a function of temperature with m" ¼
m# ¼ m for different density imbalances kF"=kF# ¼ 1, 3, 6, 10.
The solid black (dark) curves are the numerical integration of
Eq. (3), while the solid red (light) curves in (a) and (b) are given
by Eqs. (8) and (11), respectively.

1

p

0 2.01.51.00.5
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p / F

FIG. 1 (color online). Zero temperature decay rate 1=�p (units
of jUj2m"m2

# "
2
F#=8�

3) of an " quasiparticle as a function of

excitation energy �p", with m#=m" ¼ 173=6 and kF"=kF# ¼ 2.

The solid black curve is the result of a numerical integration of
Eq. (3), and the dashed red curves are given by Eqs. (5) and (6).
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because of a cancelation between the changes to the
forward and backward scattering terms.

Nonzero temperature, classical case (p ¼ kF").—In the

regime TF" � T, both � ¼" , # distributions are classical.
(i) TF" � T � TF"m#=m". Assuming thatU continues to

be weakly dependent on energy and momentum (as occurs,
for example, when kF"jaj � 1), the plateau will persist to a
much larger temperature scale, given by vth# 
 vF" (i.e.,
T 
 TF"m#=m"), as can be seen from the numerics (see

Fig. 3). This seems to indicate that the Pauli blocking of
the " atoms plays no role for the decay rate of an "
quasiparticle since the plateau survives independently of
whether the " atoms are degenerate (T � TF") or classical
(T � TF"). To better understand this unusual behavior,

we plot in Fig. 3(b) the forward and backward scatter-
ing contributions to 1=�kF" with m#=m" ¼ 100 [12]. We

find that, when T � TF", the forward and backward scat-

terings contribute equally to 1=�kF" , which can be under-

stood by taking �p"¼0 in Eq. (3). In the regime

TF" & T � TF"ðm#=m"Þ, the backward scattering begins

to decrease while the forward scattering increases, keep-
ing, however, their sum constant. This shows that Pauli
blocking indeed affects the forward and backward scatter-
ings but not the sum of the two. This constant sum is due to
the vanishing energy transfer in the decay process of the "
quasiparticle with a large mass imbalance [!max=T 

maxðm"=m#;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TF#=T

q
Þ � 1]. Thus, by rewriting nk#ð1�

nkþq#Þð1�np�q"Þþð1�nk#Þnkþq# ¼ðnk#�nkþq#Þ=ðe�!�
1Þ½e�!ð1�np�q"Þþnp�q"�’ðnk#�nkþq#Þ=ðe�!�1Þ, we

see that the " atoms play no role in the integrand of
Eq. (3), explaining why the plateau survives independently
of whether the " atoms are degenerate or classical; i.e., the
Pauli blocking is irrelevant in this case. This regime occurs
also in warm dense plasmas where the electrons are close
to degeneracy but the ions are already classical [3]. Note,

however, that the lifetime is likely to behave very differently
since the electron-ion cross section ismomentum dependent,
unlike the low-energy contact interaction.
(ii) TF"m#=m" � T. Using the classical limit of the

chemical potential for fixed particle number in Eq. (3),
i.e., �=T ! �1 when T ! 1, we find 1=�kF" is again

given by Eq. (9), but with

IðtÞ ¼
Z 1

0
dye�y2

Z ð�y2þytÞð2m#=m"Þ

ð�y2�ytÞð2m#=m"Þ
dxe�x2=4y2ex; (13)

where t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F"=2m#T

q
. When t�1, the integral can be eval-

uated straightforwardly, which gives IðtÞ ¼ 2tm2
r=m"m#, and

the decay rate becomes

1

�kF"
¼ 2

ffiffiffi
2

p jUj2m2
rn#

�3=2 ffiffiffiffiffiffi
m#

p
ffiffiffiffi
T

p
: (14)

It is interesting to compare Eq. (14) with Eq. (12). First, we
note that the Fermi momentum kF" in Eq. (12) has been

replaced by
ffiffiffiffi
T

p
in Eq. (14), as expected for the high

temperature regime. Second, when the two expressions
are equated, we obtain that the crossover between the
intermediate T behavior given by Eq. (12) and the high T
behavior given by Eq. (14) occurs for T 
 TF"m#=m" in
agreement with the analysis above. Thus, the region where
the damping rate is independent of temperature when
n" ¼ n# and m# � m" extends to temperatures much higher

than TF". This effect is clearly illustrated in Fig. 3.

Importantly, it makes the experimental observation of this
plateau regime significantly easier, as it emerges already for
fairly high temperatures, when the mass imbalance is large.
Polaron case.—Given its experimental importance, we

finally calculate the collision rate of the minority particles.
When n# ! 0, i.e., in the polaron limit, we find from

Eq. (1)

1

�#
¼ 4

15�3
jUj2m#m2

"

�
"2# þ

5�2T2

32

�
(15)

for "# � "F" and T � TF". The polaron therefore

shows normal Fermi liquid behavior, consistent with the
literature [15].
Experimental probes.—rf spectroscopy is a very suc-

cessful method to probe the single particle properties in
cold atom gases, and it is well suited to detect these new
scaling laws. First, we note that the intermediate tempera-
ture regime TF# � T � TF" has already been achieved by

the Innsbruck group using a mixture of 6Li and 40K atoms
[2]. They probed the single particle properties of the #
atoms (40K) using rf spectroscopy, where the 40K atoms
performed Rabi oscillations between an interacting and a
noninteracting state. Quasiparticle collisions cause deco-
herence, and the observed damping of the Rabi oscillations
can therefore be used to measure the collision rate. A
similar experiment should be able to detect the " collision
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Eqns (8), (12) and (14)
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m / m = 40 / 6
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1
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T / TF

FIG. 3 (color online). Decay rate 1=�kF" in units of
jUj2k4Fm2

r=32�
3ðm"m#Þ1=2 as a function of temperature for n" ¼

n# obtained from a numerical integration of Eq. (3). The left

figure shows the appearance of a plateau for m# � m". The right
figure compares the numerical results (solid curves) with Eqs. (8),
(12), and (14) (dashed curves) in the low, intermediate, and high
temperature limits, respectively. It also shows the contributions
of the forward and backward scattering terms of Eq. (1).
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rate, as described by Eq. (1). One could block out the low
lying states in the Fermi sea of " atoms from participating
in the rf spectroscopy by coupling them to a noninteracting
state with a filled Fermi sea slightly smaller than that of
the " atoms. The low lying states are then inert to the rf
probe due to the blocking of the noninteracting state.
Alternatively, one could use momentum-resolved rf spec-
troscopies [2,21,22]. For a 6Li-40K mixture, the typical
experimental parameters used in Ref. [2] are "LiF ¼
232@ kHz and kLiF ¼ @

�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mLi"

Li
F

q
¼ 1=2850a0 with a0

as Bohr’s radius and the interspecies background scattering
length abg ¼ 63a0. Assuming equal density nLi ¼ nK and

kFa ¼ 0:1, we find that the quasiparticle lifetime of Li in
the plateau regime is 
1 ms, which is the typical scale
measured in Ref. [2]. In solid state systems, deviations from
standard quadratic behavior often show up in electrical
resistivity, specific heat, and magnetic susceptibility mea-
surements. In atomic gases, our results could affect transport
properties such as the spin drag rate (which has already been
measured [23]), the damping of collective modes, and ther-
modynamic properties such as the heat capacity.

Discussion and conclusions.—We have shown that
weakly interacting Fermi-Fermi mixtures realize a rich
diversity of regimes for the quasiparticle damping which
are analogous to several quite distinct physical systems in
nature. These regimes are characterized by scaling laws for
the quaisparticle lifetimewhich are different from the usual
quadratic case. Our results are derived in the weakly inter-
acting limit, making them quantitatively reliable. The ef-
fects described in this Letter can be measured using rf
spectroscopy.
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