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Coupled dynamical systems with one slow element and many fast elements are analyzed. By averaging

over the dynamics of the fast variables, the adiabatic kinetic branch is introduced for the dynamics of

the slow variable in the adiabatic limit. The dynamics without the limit are found to be represented by

stochastic switching over these branches mediated by the collective chaos of the fast elements, while the

switching frequency shows a complicated dependence on the ratio of the two time scales with some

resonance structure. The ubiquity of the phenomena in the slow–fast dynamics is also discussed.
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Dynamics with distributed time scales are ubiquitous in
nature, not only in physicochemical and geophysical sys-
tems but also in biological, neural, and social systems. In
biological rhythms, for example, dynamics with time
scales as long as a day coexist and interfere with the
dynamics of much faster biochemical reactions occurring
on subsecond time scales [1]. A similar hierarchy exists
even within protein dynamics [2]. Electroencephalography
(EEG) of the brain is known to involve a broad range of
frequencies, and the functional significance of multiple
time scales has been extensively discussed [3–5]: Neural
dynamics in higher cortical areas alter our attention on a
slower time scale and switch the neural activities of faster
time scales in lower cortical areas. Faster sensory dynam-
ics are stored successively in short-term to long-term
memory. Unveiling the salient intriguing behavior that is
a result of the interplay of dynamics with different time
scales is thus of general importance.

To treat dynamics with fast and slow time scales, several
theoretical tools have been developed since the proposition
of Born-Oppenheimer approximation. Consider dynamical
systems of the form

dyi=dt ¼ Fiðfxjg; fyjgÞ; �dxi=dt ¼ Giðfxjg; fyjgÞ;
(1)

where � is small so that fxig are faster variables than fyjg.
According to adiabatic elimination or Haken’s slaving
principle [6–9], fast variables are eliminated by solving
dxi=dt ¼ 0 for a given fyjg, and by using this solution of

fxig as a function of fyjg, closed equations for the slow

variables are obtained. This is a powerful technique when
the fast variables are relaxing to fixed points for the given
slow variables, whereas to include a case for which the fast
variables have oscillatory dynamics, the averaging method
is useful [7,10]. That is, the long-term average of the fast
variables hxii is taken for a given fyjg, and by inserting the

average into the equation for fyjg, a set of closed equations
for the slow variables is obtained. When the number of

variables involved is small, additional techniques devel-
oped with the use of a slow manifold can be beneficial [11].
Dynamical systems with mutual interference between the
fast and slow variables have also been investigated [12–18].
In this Letter, we study a case that involves a large

number of fast variables which show chaotic dynamics.
We introduce the adiabatic kinetic plot (AKP) to account
for the kinetics of the slow variables under the adiabatic
limit � ! 0 by using the averaging method. We show that
this plot is useful for analyzing the dynamics even for a
finite, small � for which stochastic transitive dynamics
over different modes are observed and are explained as
switches over the adiabatic kinetic branches (AKB)
obtained from the AKP. This stochasticity in the switches
is shown to originate from the collective chaos of an
ensemble of fast variables.
As a specific example, we consider the case for a single

slow variable y, where F � hðfxjg; yÞ � y and Gðfxjg; yÞ
are chosen from the threshold dynamics as

dy

dt
¼ hðfxjg; yÞ � y � tanh

�
�ffiffiffiffi
N

p XN�1

j¼1

ðJ0jxj þ J00yÞ
�
� y;

(2)

�
dxi
dt

¼ Gðfxjg; yÞ � tanh

�
�ffiffiffiffi
N

p XN�1

j¼1

ðJijxj þ Ji0yÞ
�
� xi;

(3)

where � is taken to be 10. Here, Jij is chosen as a homo-

geneous random number in the interval [� 1, 1], and once
it is chosen, it is fixed during the dynamics for each sample.
We have adopted this form because this type of threshold
dynamics [19,20] is used as a simplification of neural
network [21] or gene regulation network dynamics [22],
in which each element (neuron or gene expression) tends
to take either an ‘‘on’’ (x ¼ 1) or ‘‘off’’ (x ¼ �1) state
activated (Jij > 0) or inhibited (Jij < 0) by other elements.

Note, however, that the method and findings discussed here
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are not restricted to the specific choices of the functions F
and G; they are valid for any choice.

The dynamics of the slow variable y is represented using
the averaging method as dy=dt ¼ hh½fxjgðyÞ�i � y, where

hh½fxjgðyÞ�i is the temporal average of h for a given y, i.e.,

the average input that y receives from fxjg, in the adiabatic
limit. To compute the average h�i, we first fix the y value,
obtain the attractors for xj, and then compute the temporal

average for each attractor. By changing the value of y,
hh½fxjgðyÞ�i is obtained, and this forms a continuously

changing branch. At this point, it is useful to introduce
the plot (y, hh½fxjgðyÞ�i) (Fig. 1). If there are multiple

attractors that depend on the initial condition of xj, there

are several branches in the AKP. Starting from a given y
and initial condition xj, the dynamical system falls on a

specific branch. According to the equation for y, if hhi is
larger (smaller) than y, then dy=dt > 0 (dy=dt < 0). Thus,
we can trace the dynamics of y along each branch. When a
branch crosses the line y ¼ hhi, then y falls on a fixed
point. If the slope of the branch at the fixed point is less
than unity, then the system is attracted to the point so that
the slow variable falls on a fixed point attractor (at least) in
the limit of � ! 0 (see the middle branch in Fig. 1). We
have confirmed that this is true up to a certain value of �.

The periodic motion of y is also explained by the AKP.
For example, see the top and bottom branches in Fig. 1. As

y increases along the top branch, it eventually reaches the
end point of the branch and then switches to the bottom
branch, which corresponds to an alternative attractor of x.
The process then repeats itself as y decreases along the
bottom branch to the end point before switching to the top
branch. Indeed, this periodic oscillation exists as an attrac-
tor, as shown in Fig. 1(b). In this example, the fxjg attractor
is a fixed point at each branch, but in many other examples,
the attractor may be a limit cycle or chaos. However, the
present analysis of the y dynamics is still valid in such
cases. In fact, the periodic oscillation of y as analyzed from
the AKP exists up to a certain value of � (e.g., �0:01),
where a small amplitude, fast oscillation of order � is
added to the slow y oscillation, if fxjg exhibits oscillation.
In general, AKP has much more branches that make the

oscillatory dynamics complex. A complicated example is
shown in Fig. 2. In this case, in the limit of � ! 0, y
switches between two branches. In the example in
Fig. 3(a) for � ¼ 2� 10�6, y periodically switches
between the branch aþ and a section of branch j� (‘‘4’’).
For a larger � value, however, complex oscillations of y are
seen, as shown in Fig. 2. This is described as the switching
over all 2� 10 branches, a�, b�, c�; . . . , j� (the first 12
are labeled explicitly in the figure), where � denotes the
symmetric branches of y > 0 and y < 0. Here, this switch-
ing is not always deterministic. For example, aþ ! bþ
(‘‘1’’) or aþ ! i� (“3” ! “4”) are both possible, as are
dþ ! j� (“1” ! “2”) and dþ ! eþ (“5” ! “6”). As � is
decreased, a larger number of branches is visited by the
stochastic switches [see Figs. 3(a) to 3(b), and to 3(c)] until
only a cycle between two branches remains in the limit of
� ! 0, as in Fig. 3(a).
With the complex switches, the dynamics of xi switch

among (at least) 2� 10 types of attractors including fixed
points, limit cycles, and chaos. This type of switching is
reminiscent of chaotic itinerancy [23–26] where the orbit
itinerates over ‘‘attractor ruins.’’Here, in contrast, the sto-
chastic switches progress among attractors for a given
value of the slow variable y, while the chaotic dynamics
of the fast variables provides a source for the stochastic
switching. Indeed, at the boundary of the branches a, b, d,
and f, the fast variables fxig show chaotic oscillation.
For a detailed analysis of the stochastic switching due to

the chaotic dynamics, we consider the simpler example
given in Fig. 4 with a different matrix Jij. In this case, as

� ! 0, y shows periodic oscillation between the two
branches aþ and a�, whereas for � > �c � 0:5� 10�5,
the branches bþ and b� are also available, and stochastic
switching aþ ! a�; bþ and its symmetric counterpart
appear. The choice between aþ ! a� and aþ ! bþ is
stochastic. Indeed, we have computed the Shannon entropy
of the n-tuple symbol sequence of the branches a; b visited
by the slow y variable and confirmed that it increases
linearly with n (� 0:91n) [27]. Since the coefficient is
close to unity, the symbol sequence is close to being

(a)

(b)

FIG. 1 (color online). (a) An example of the AKP for our
model [Eqs. (1) and (2)] with N ¼ 10 and � ¼ 10. The AKP
is computed by fixing the y value at the abscissa and numerically
integrating the equations of the fast variables for 103 time units
from 10 randomly selected initial conditions. The ordinate hhi is
then computed from the temporal average of the last 8� 102

time units of each initial condition. The y value is incremented
by 0.005 to obtain the plot. (b) The time series of y for � ¼
0:0001. There are two coexisting attractors: a fixed point (green)
and a limit cycle (red).
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random, suggesting that the previous history of visited
branches is not so much memorized. Furthermore, the
distribution of the interval time for two neighboring
switches aþ ! b� is well described by a Poisson distribu-
tion (see Supplemental Material [28], Fig. 1).

To examine if the origin of the stochasticity lies in the
chaos of the fast variables, we measured the maximal
Lyapunov exponent for the (N � 1)-dimensional fast dy-
namics of fxig for a given y at each branch. As shown in
Fig. 4(a) and Supplemental Fig. 2 [28], the exponent is
positive around the end points of the branches where
stochastic switching occurs. Several other examples also

show stochastic transitioning beyond a critical value of
�, a Poisson switching-time distribution, and a positive
Lyapunov exponent at the branch end point (for example,
see Supplemental Material Fig. 3 [28]). The stochastic
switching from the branches a, b, d, and f in Fig. 2 is
also explained by the chaotic dynamics of the fast fxig
variables at the branches.
When fxig showed chaotic dynamics uncorrelated with

each other, the mean field h might be regarded as just the
noise. To examine this, we simulated the present model by
increasing the number of fast elements from N ¼ N0 to
2kN0 (k ¼ 1; 2; . . . ; 6) by cloning the matrix Jij: We chose

JiþN0m;jþN0m
0 ¼ Ji:j for m, m0 ¼ 1; . . . ; 2k � 1. , where the

interaction matrix from Ji;j is divided by 2
k

ffiffiffiffiffiffi
N0

p
(instead offfiffiffiffiffiffiffiffiffiffiffi

2kN0

p
). According to the noise picture, the variance of h

would decrease with 2�k with the increase in k, so that h
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FIG. 3 (color online). Time series of the slow variables
y corresponding to Fig. 2, except for � ¼ 2� 10�6 (a), � ¼
1� 10�5 (b), and � ¼ 1� 10�4 (c). The time series of (c)
corresponds to Fig. 2(b) but is plotted for a longer time span.
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FIG. 2 (color online). (a) The AKP with N ¼ 30 for a given J
that produces complex oscillation. The AKP is computed in the
same manner as Fig. 1 but from 3� 105 to 3:5� 105 time units
over 20 randomly chosen initial conditions. The branches are
labeled with lower case letters. Because of the symmetry in the
model, branches for y > 0 and y < 0 are indicated by þ and �,
respectively. (The branches i and j happen to take almost the
same hhi value but belong to different fxjg attractors). The

numbers correspond to the time course plotted in part (b).
(b) Time series of the slow variable y for � ¼ 0:0001. The
numbers (1; 2; . . . ; 12) correspond to the branches visited there,
as displayed in part (a). (c) The time series of the fast variables xi
(i ¼ 1; 2; . . . ; 9) for the branches b, c, and h.

(a)

(b)

FIG. 4 (color online). (a) The AKP computed for a different
matrix J with N ¼ 20 and the time average between 102 to
2� 103 time units from 15 initial conditions. The maximum
Lyapunov exponent of the dynamics of fxig is also computed
over the interval of 3� 103 to 4� 103 time units for each
branch of a given y. The segment of the branch with positive
exponent (whose value is about �:02) is colored as blue. (See
Supplemental Material [28], Fig. 2 for the Lyapunov exponents
at each branch). (b) The time series of y for � ¼ 0:001.
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would approach a constant as k is increased, and the
frequency of stochastic switchings would decrease.
However, this does not occur: Neither the switching dy-
namics nor the mean-field variance changes with the
increase in k. Indeed, correlation among fast chaotic ele-
ments remains, so that h shows collective chaotic motion,
as has been studied extensively [29–32]. In fact, the oscil-
lation of the collective variable h has a larger amplitude
than the typical mean-field oscillation in the collective
chaos in coupled chaotic systems studied thus far
[29,31], as some of the fast elements xi undergo a corre-
lated change between �1 and 1.

With an increase in � beyond �c, the frequency of the
stochastic switching increases, but with a further increase,
the frequency shows a complicated dependence on �, as it
is increased beyond �c (see Fig. 5). There are certain
parameters for which the switching loses its stochasticity
and is replaced by either perfect switching between two
original branches in the � ! 0 limit or perfect switching to
the new branch (i.e., aþ ! bþ only). When the switching
ratio is zero or unity, the long-term oscillation of the slow
variable y is periodic. Thus, each such ‘‘deterministic’’
region is regarded as a ‘‘window’’ in the parameter region
showing chaos. Here, it is interesting to note that periodic
motion is generated between variables with time scales
differing by more than 2 orders of magnitude. In fact, the
collective variable h can have a slower component than the
original time scale � for xi. Complicated resonance struc-
tures of the switching ratio are often observed in the
present system when stochastic switchings exist.

To summarize, we have introduced an AKP to study the
kinetics of slow variables in the adiabatic limit � ! 0, Up
to a certain critical value �c, the slow dynamics fall either

on a fixed point or exhibit periodic switching between
branches. As � is increased (i.e., the time scale difference
is decreased), stochastic switching among several branches
appears mediated by the collective chaotic motion of the
fast variables, and the variety of switchings increases with
a further increase in �.
The stochastic switching by collective chaos is

commonly observed when the number of fast elements is
large. We checked the fraction of Jij to exhibit such

behavior by sampling 1000 randomly chosen Jij for N ¼
10; 20; . . . ; 100. As N is increased, most of the fast systems
[Eq. (2)] show chaotic dynamics (see also [33]), and the
fraction of Jij to show the present stochastic switching

reaches 80% for N ¼ 100 (see Supplemental Material
[28], Fig. 4).
The switching behavior here has resemblance with

bursting dynamics in neural activities, which are often
modeled by low-dimensional dynamical systems [34].
Also, switching over multiple attractors is studied in sto-
chastic dynamical systems [35]. In our model, a variety of
quasistationary states is visited, each of which can be
effectively low-dimensional, and sits in distinct regions
in high-dimensional phase space, while the overall switch-
ing dynamics explore high-dimensional phase space as in
chaotic itinerancy [26]. The long-term switching taking
advantage of fast collective chaos is approximately ran-
dom, as described by Poissonian switching-time distribu-
tion and high Shannon entropy for the sequence of visited
branches, while, for short time, the dynamics are well
described by deterministic AKP. Quasistationary dynamics
at each branch as well as possible branches to be switched
are completely determined by AKP for � ! 0. Indeed, as
long as � is not too large (say up to 0.01), this description
by AKP is valid, while � dependence lies only in the
switching frequency among AKBs allowed to be switched.
In this sense, both high-dimensional random dynamics and
lower-dimensional collective dynamics constitute the over-
all dynamics.
Long-term switching over different modes of fast oscil-

lations with different time scales is often observed in EEGs
in the brain, biorhythms, climate dynamics, and so forth
[26]. The present approach may shed light on such itinerant
behavior, while hierarchical construction of AKPs may be
beneficial to deal with a system with a variety of distinct
time scales [14]. Indeed, mutual inference between fast and
slow modes leads to resonance between the slow and
collective modes, which is similar to the interference in
the neural activity dynamics between higher and lower
cortical areas during changes in our attention.
The AKP method here can be applied generally to fast-

slow systems, and stochastic switching over the AKB will
appear when the fast variables show chaotic motion.
Extension to a case with multiple slow variables is also
possible, in principle, by extending each branch to a sur-
face or higher-dimensional manifold.

FIG. 5 (color online). Frequency of the switching in the
branches corresponding to the dynamics in Fig. 4 as a function
of �. For each � value, the number of aþ to bþ switching events
divided by those from aþ to a� are computed as the fraction of
the number of times that y goes beyond 0.2 divided by the
number of times that it goes below 0 within 500 time units.
Since at the branch bþ , y goes beyond 0.2, while at the branch
aþ it cannot go beyond 0.11 as shown in Fig. 4, the threshold 0.2
is adopted to select the branch bþ .
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