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Stimulated by the proton radius conundrum, measurements of the Lamb shift in various light muonic

atoms are planned at PSI. The aim is to extract the rms charge radius with high precision, limited by the

uncertainty in the nuclear polarization corrections. We present an ab initio calculation of the nuclear

polarization for �4Heþ leading to an energy correction in the 2S-2P transitions of �A
pol ¼ �2:47 meV

�6%. We use two different state-of-the-art nuclear Hamiltonians and utilize the Lorentz integral trans-

form with hyperspherical harmonics expansion as few-body methods. We take into account the leading

multipole contributions, plus Coulomb, relativistic, and finite-nucleon-size corrections. Our main source

of uncertainty is the nuclear Hamiltonian, which currently limits the attainable accuracy. Our predictions

considerably reduce the uncertainty with respect to previous estimates and should be instrumental to the

�4Heþ experiment planned for 2013.
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Introduction.—Recent laser spectroscopy measurements
of the muonic hydrogen Lamb shift [1] (2S-2P transition) at
PSI have tremendously improved the accuracy in determin-

ing the proton charge radius hr2pi1=2. Besides experimental

precision, the accurate deduction of hr2pi1=2 heavily relies on
theory. Theoretical estimates of quantum electrodynamics
(QED), recoil, and nuclear structure corrections are needed.
The proton radius extracted at PSI [2,3] is 10 times more
accurate than the value determined from electron hydrogen,
i.e., CODATA-2010 [4], but also deviates from it by 7�. This
discrepancy, coined the ‘‘proton radius puzzle,’’ is challeng-
ing the understanding of experimental systematic errors and
of theoretical calculations based on the standard model.
Alternative explanations involving physics beyond the stan-
dard model (e.g., lepton flavor universality violations) have
also been proposed (see Ref. [5] for a review). To understand
this puzzle, one possible strategy is to investigate atoms with
other nuclear charges Z or mass numbers A and track the
persistence or variation of this discrepancy [6]. Extending
the Lamb shift measurements to other muonic atoms, e.g.,
�D, �3Heþ, and�4Heþ, must be complemented by corre-
sponding theoretical calculations. Lamb shifts in light
muonic atoms are very sensitive to nuclear structure effects
since a muon is 206 times heavier than an electron and thus
interacts more closely with the nucleus [7,8]. The 2S-2P
energy difference can be generally related to the nuclear

charge radius hR2
ci1=2 (in @ ¼ c ¼ 1 units) by [9]

�E � �QED þ �pol þ �Zem þm3
rðZ�Þ4hR2

ci=12; (1)

in an expansion of Z� up to fifth order. Here, � is the fine-
structure constant and mr ¼ m�MA=ðm� þMAÞ is the

reduced mass related to the nuclear mass MA and the
muon mass m�. �Zem is the third Zemach moment [10]

defined via the nuclear charge density �0ðRÞ as

�Zem¼�m4
r

24
ðZ�Þ5

ZZ
dRdR0jR�R0j3�0ðRÞ�0ðR0Þ: (2)

Contributions to �QED in Eq. (1) are from vacuum polariza-

tion, muon self-energy, and relativistic recoil, while �pol ¼
�A
pol þ �N

pol is the sum of the nuclear polarization �A
pol and the

intrinsic nucleon polarizability �N
pol. Since calculations of

�QED and spectroscopy measurements of �E have both

achieved high accuracy, the current bottleneck in accurately

extracting hR2
ci1=2 from Eq. (1) lies in the polarization un-

certainty. In muonic helium, to determine the nuclear radii
with a relative accuracy of 3� 10�4, �pol needs to be known

at the �5% level [6]. Here, we focus on the nuclear polar-
ization �A

pol. �
N
pol depends on the internal nucleon structure

and can be evaluated separately [11–13] apart from nuclear
dynamics.
The nuclear polarization is induced by a two-photon

exchange process (Fig. 1), where the nucleus in an atom
is virtually excited by its Coulomb interaction with the
lepton. Effects on the leptonic spectrum are evaluated in
second-order perturbation theory with inputs from nuclear
structure functions, also called response functions. In early
calculations, structure functions were either calculated
using simple nuclear potentials (e.g., �D [14] and �12C
[15]) or extracted from measurements of photoabsorption
cross sections (e.g., �4Heþ [16–18]). However, these
approaches lack the desired accuracy. For example,

FIG. 1. The lepton-nucleus two-photon exchange.
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Refs. [16–18] yielded �A
pol¼�3:1meV �20% for �4Heþ.

Evaluations of the polarization effect in �D using state-of-
the-art potentials have significantly improved the accuracy
[19,20]. The purpose of this Letter is to extend these calcu-
lations to�4Heþ. We present the first ab initio calculation of
the nuclear polarization effects in �4Heþ using modern
nuclear potentials.We consider systematically all terms con-
tributing to order ðZ�Þ5 and estimate the theoretical error.

Polarization contributions.—Following works on�D by
Pachucki [20] and Friar [21], we separate contributions to
the �4Heþ polarization into nonrelativistic, relativistic,
Coulomb-distortion, and nucleon-size effects. The
�4Heþ system is described as a muon interacting with
the 4He nucleus containing four pointlike nucleons by

H ¼ Hnucl þH� ��H; (3)

whereHnucl denotes the nuclear Hamiltonian andH� is the

nonrelativistic Hamiltonian of a muon in the Coulomb
potential of a pointlike nucleus

H� ¼ p2=2mr � Z�=r: (4)

Here, p ¼ jpj (r ¼ jrj) is the relative momentum
(distance) of the muon from the center of mass (c.m.) of
the nucleus. The last term in Eq. (3)

�H ¼ XZ
a

�Vðr;RaÞ �
XZ
a

�

�
1

jr� Raj �
1

r

�
(5)

represents the difference between the muon interaction
with the nucleus and the sum of Coulomb interactions
between the muon and each proton, located at a distance
Ra from the c.m. Polarization effects are evaluated as
corrections due to �H in second-order perturbation theory.
Utilizing the point-nucleon charge density operator

�̂ðRÞ � 1

Z

XZ
a

�ðR�RaÞ; (6)

the nuclear polarization correction assumes the form

�A
pol¼�

ZX
N�N0

ZZ
dRdR0��

NðRÞPðR;R0;!NÞ�NðR0Þ; (7)

where �NðRÞ ¼ hNj�̂ðRÞjN0i is the charge density transi-
tion matrix element and

PðR;R0;!NÞ¼�Z2
Z
drdr0�Vðr;RÞh�0jri

�hrj 1

H�þ!N���0

jr0ihr0j�0i�Vðr0;R0Þ

(8)

is the muonic matrix element. Here, !N ¼ EN � EN0
, and

EN0
, EN , jN0i, and jNi are the nuclear ground- and excited-

state energies and wave functions, respectively. The sym-

bol
RP
indicates a sum over discrete plus an integration over

continuum states. ��0
and j�0i are the unperturbed atomic

energy and wave function in either the 2S or 2P state. In
Eq. (7), the nucleus is excited into all possible intermediate

states, which represents the inelastic part of the two-photon
exchange, while the elastic part is known as a finite-size
effect [9].
The leading contribution to �A

pol is obtained in the non-

relativistic limit, neglecting in Eq. (8) the Coulomb-
potential part of H�. Only contributions to the 2S state

are considered, as 2P-state effects enter only at order
ðZ�Þ6. In this limit, we have

PðR;R0; !Þ ¼ �Z2�2ð0Þ
Z dq

ð2�Þ3
�
4��

q2

�
2ð1� eiq�RÞ

� 1

q2=2mr þ!
ð1� e�iq�R0 Þ; (9)

where �2ð0Þ ¼ ðmrZ�Þ3=8� is the normalization coeffi-
cient of the muon 2S state. After integrating over q in
Eq. (9), terms not depending on both R and R0 drop out,
due to the orthogonality of the nuclear eigenstates. The
resulting muonic matrix element P is then a function of
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr!

p
, with 	 � jR� R0j. Expanding P in powers of

	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr!

p
up to fourth order yields

Pð	;!Þ ’ m3
rðZ�Þ5
12

ffiffiffiffiffiffiffiffiffi
2mr

!

s �
	2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr!

p
4

	3 þmr!

10
	4

�
:

(10)

	 indicates the ‘‘virtual’’ distance a proton travels during
the two-photon exchange. According to the uncertainty
principle, it is related to ! by 	� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MA!

p
. Therefore,

the expansion parameter 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr!

p
in Eq. (10) is of orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mr=MA

p � 0:17.
In the following, we will relate the different �A

pol terms

coming from Eq. (10) to structure functions. Details will be
given in a forthcoming paper. The structure functions are
defined as

SOð!Þ � 1

2J0 þ 1

ZX
N�N0;J

jhN0J0kÔkNJij2�ð!�!NÞ; (11)

where Ô is a general operator. Here, we use the reduced
matrix elements by employing the Wigner-Eckart theorem
[22]. J0 (J) is the total angular momentum of the ground
(excited) state of 4He.
The leading contribution to the nuclear polarization,

denoted by the superscript (0), is the electric-dipole cor-
rection, which originates from the 	2 term in Eq. (10)

�ð0Þ
D1 ¼ � 2�m3

r

9
ðZ�Þ5

Z 1

!th

d!

ffiffiffiffiffiffiffiffiffi
2mr

!

s
SD1

ð!Þ; (12)

where D̂1 ¼ ð1=ZÞPZ
a RaY1ðR̂aÞ, Y1 is the rank-one spheri-

cal harmonics, and !th indicates the threshold excitation
energy of 4He, i.e., !th ¼ 19:8 MeV.
The subleading 	3 term is independent of !. ReplacingRP
N�N0

jNihNj with 1� jN0ihN0j, the contribution of this

term, denoted by the superscript (1), is
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�ð1Þ ¼ �m4
r

24
ðZ�Þ5

ZZ
dRdR0jR� R0j3½hN0j�̂yðRÞ�̂ðR0Þ

� jN0i � �0ðRÞ�0ðR0Þ	; (13)

where �0ðRÞ � �N0
ðRÞ ¼ hN0j�̂ðRÞjN0i is the charge den-

sity, satisfying
R
dR�0ðRÞ ¼ 1. It is convenient to write

Eq. (13) as �ð1Þ ¼ �ð1Þ
R3pp þ �ð1Þ

Z3 . The first term �ð1Þ
R3pp is the

ground-state expectation value of the proton-proton dis-

tance cubed. The second term �ð1Þ
Z3 cancels exactly the third

Zemach moment �Zem that appears in the finite-size correc-
tions to the Lamb shift (1). This cancellation was also found
by Pachucki [20] and Friar [21,23] in �D. Here, we retain

this term and calculate �ð1Þ
R3pp and �ð1Þ

Z3 first in the point-

nucleon limit and then add finite-nucleon-size corrections.
Contributions from the sub-subleading 	4 term, denoted

with the superscript (2), are

�ð2Þ ¼ m5
r

18
ðZ�Þ5

Z 1

!th

d!

ffiffiffiffiffiffiffiffiffi
!

2mr

s �
SR2ð!Þ

þ 16�

25
SQð!Þ þ 16�

5
SD1D3

ð!Þ
�
; (14)

where SR2 and SQ are the respective structure functions of

the monopole R̂2 ¼ ð1=ZÞPZ
a R

2
a and quadrupole Q̂ ¼

ð1=ZÞPZ
a R

2
aY2ðR̂aÞ operators. SD1D3

indicates the interfer-

ence between two multipolarity-one operators D̂1 and

D̂3 ¼ ð1=ZÞPZ
a R

3
aY1ðR̂aÞ and is calculated as

S D1D3
ð!Þ ¼ ½SD1þD3

ð!Þ � SD1
ð!Þ � SD3

ð!Þ	=2: (15)

Effects from R̂2, Q, and the interference term in Eq. (14)

are defined, respectively, as �ð2Þ
R2, �

ð2Þ
Q , and �ð2Þ

D1D3.

Since the electric-dipole contribution �ð0Þ
D1 dominates in

the nonrelativistic approximation, we add relativistic cor-
rections solely to this term. These corrections can be
obtained from the longitudinal (L) and transverse (T) parts
of the two-photon exchange amplitude [15,16]. Replacing
the nonrelativistic Green’s function with relativistic
expressions, we obtain relativistic corrections as

�ð0Þ
LðTÞ ¼

2m3
r

9
ðZ�Þ5

Z 1

!th

d!�LðTÞ
�
!

mr

�
SD1

ð!Þ; (16)

where the two energy-dependent weights are

�Lð
Þ ¼ �
ffiffiffiffiffiffiffiffiffi
2=


p þ 2F ð
Þ; (17)

�Tð
Þ ¼ 
þ 
 lnð2
Þ þ 
2F ð
Þ; (18)

with

F ð
Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
� 2Þ=
p
arctanh½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
� 2Þ=
p 	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
þ 2Þ=


p
arctanh½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

=ð
þ 2Þ

p
	; (19)

and 
 � !=mr ranges from �0:2 to infinity. Expressions
similar to Eqs. (17) and (18) are also derived by Martorell

et al. [24], whose transverse form is, however, valid only
for 
 
 2.
By including a Coulomb distorted muonic wave func-

tion in the intermediate state of the two-photon exchange in

Fig. 1, �ð0Þ
D1 is corrected in both the 2S and 2P states. We

follow the derivation by Friar [18] and provide Coulomb-

distortion corrections up to second order in a Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr=!

p
expansion. The Coulomb-distortion correction is given as
the difference between the 2S and 2P levels,

�ð0Þ
C ¼ � 2�m3

r

9
ðZ�Þ6

Z 1

!th

d!

�
mr

!

�
1

6
þ ln

2mrZ
2�2

!

�

� 17

16
Z�

�
2mr

!

�
3=2

�
SD1

ð!Þ: (20)

Even though �ð0Þ
C is of order ðZ�Þ6, its contribution is

significantly enhanced by the 2S-logarithmic term in
Eq. (20).
Considering the finite size of the nucleons, the proton

position in Eq. (5) should be replaced by a convolution
over the proton charge density, and a similar term should
be added for the neutron. For the proton and neutron
form factors [25], we use low-momentum approximations:
GE

pðq2Þ ’ 1� 2q2=�2 and GE
n ðq2Þ ’ 
q2. Following

Ref. [21], we choose � ¼ 4:120 fm�1 and 
 ¼
0:019 35 fm2, which reproduce hr2pi1=2 ¼ 0:8409 fm [3]

and hr2ni ¼ �0:1161 fm2 [26]. Since corrections to �ð0Þ
vanish, the leading nucleon-size (NS) correction enters in

�ð1Þ as

�ð1Þ
NS ¼ �m4

rðZ�Þ5
�
2

�2
� 


�ZZ
dRdR0jR�R0j½hN0j�̂y

� ðRÞ�̂ðR0ÞjN0i � �0ðRÞ�0ðR0Þ	; (21)

where we have used the isospin symmetry of the 4He
ground state [27,28]. The prefactors 2=�2 and�
 account
for respective contributions from proton-proton and
neutron-proton correlations, whereas neutron-neutron cor-

relations are neglected. Similarly to �ð1Þ, contributions to
�ð1Þ
NS from the two integrands in Eq. (21) are denoted as

�ð1Þ
NS ¼ �ð1Þ

R1pp þ �ð1Þ
Z1 .

The subleading nucleon-size correction enters in �ð2Þ as

�ð2Þ
NS¼�16�

9
m5

rðZ�Þ5
�
2

�2
�


�Z 1

!th

d!

ffiffiffiffiffiffiffiffiffi
!

2mr

s
SD1

ð!Þ: (22)

Summing up the nuclear polarization corrections to the
Lamb shift, we have

�A
pol ¼ �ð0Þ þ �ð1Þ þ �ð2Þ þ �NS

¼ ½�ð0Þ
D1 þ �ð0Þ

L þ �ð0Þ
T þ �ð0Þ

C 	 þ ½�ð1Þ
R3pp þ �ð1Þ

Z3	
þ ½�ð2Þ

R2 þ �ð2Þ
Q2 þ �ð2Þ

D1D3	 þ ½�ð1Þ
R1pp þ �ð1Þ

Z1 þ �ð2Þ
NS	:
(23)

Computational tools.—The 4He structure functions
involve a sum over all the spectrum, including energies
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beyond the three-body disintegration threshold. Thus, we
calculate them using the Lorentz integral transform (LIT)
method [29,30], which allows exact calculations in this
energy range. We use the effective interaction hyperspher-
ical harmonics [31] few-body technique to solve the 4He
ground state and the LIT equations. The same methods
were used, e.g., for the first realistic calculation of the 4He
dipole structure function in Ref. [32].

For the nuclear Hamiltonian, we use two state-of-the-art
potential models that include three-nucleon (3N) forces:
(i) the Argonne v18 [33] nucleon-nucleon (NN) force
supplemented by the Urbana IX [34] 3N force, denoted
by AV18þ UIX, and (ii) a chiral effective field theory
potential [35,36], denoted by �EFT, where the NN and 3N
forces are at next-to-next-to-next-to-leading order and
next-to-next-to-leading order in the chiral expansion,
respectively. For the chiral 3N force, we use the parame-
trization of the low-energy constants obtained in Ref. [37]
(cD ¼ 1 and cE ¼ �0:029). The calculated 4He binding
energy, point-proton radius, and electric-dipole polariz-
ability �E are, respectively, 28.422 MeV, 1.432 fm, and
0:0651 fm3 for the AV18þ UIX potential. The corre-
sponding numbers for the �EFT force are 28.343 MeV,
1.475 fm, and 0:0694 fm3. These numbers are in good
agreement with previous calculations [28,38,39]. The theo-
retical AV18þ UIX (�EFT) binding energy and radius
are, respectively, within 0.3% (0.1%) and 3% (0.3%) of
the experimental values. The uncertainty of �E, spanned
by these two potentials, agrees with one in a recent study
from variations of the �EFT low-energy constants [39] and
is much smaller than the experimental error.

Results.—We first check the formalism by comparing
our �D results with Pachucki [20]. In Table I, we present
all corrections related to the dipole structure function
SD1

ð!Þ obtained from the AV18 potential [40]. We find a

good agreement for �ð0Þ
D1 and �ð0Þ

C . A difference in the

relativistic corrections appears because in Ref. [20], �ð0Þ
L

includes only the leading term of�L [Eq. (17)] in an!=mr

expansion and neglects �T [Eq. (18)], since it is one order
higher in !=mr. These higher-order terms, which we
include, provide additional relativistic corrections to the
Lamb shift in �D. Consequently, the �1:680 meV result
of Ref. [20] changes to �1:698 meV, where in this case,
the cancellation of the third Zemach moment is imple-
mented as in Ref. [20].

Now, we turn to �4Heþ and discuss the first ab initio
calculations for �A

pol. Numerical results for the AV18þ
UIX and �EFT potentials are presented in Table II, leading
to an average value of �A

pol ¼ �2:475 meV. In the point-

nucleon treatment, we observe that the leading contribu-

tion �ð0Þ, amounting to �3:743 meV with AV18þ UIX
and �3:981 meV with �EFT, strongly dominates in �A

pol.

Regarding the subleading terms, each individual term in

�ð1Þ (or �ð2Þ) is not necessarily small. Only their complete
combination at each order fulfills the expansion in

	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr!

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr=MA

p
as a consequence of the uncertainty

principle, and yields �ð1Þ ¼ 0:775 meV and �ð2Þ ¼
0:089 meV when averaging AV18þ UIX and �EFT cal-

culations. As expected, �ð1Þ and �ð2Þ are, respectively, one
and two orders smaller in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr=MA

p
than �ð0Þ. The nucleon-

size correction contributes an additional �NS ¼
0:523 meV on average. The latter depends on the value

of hr2pi1=2: using 0.8775 fm [4] will increase �NS to

0.579 meV.
The numerical accuracy of �A

pol is also studied. The error

in the effective interaction hyperspherical harmonics
method is controlled by the convergence with respect to
themaximumgrand-angularmomentumKmax, which deter-
mines the size of the model space [31]. This error, obtained
by taking the difference between results with Kmax ¼
22 ð20Þ to those withKmax � 4, is 0.4% (0.2%) forAV18þ
UIX (�EFT). An additional 0.2% error is estimated by
comparing the results from integrating the structure func-
tions calculated using the LIT method with those obtained
by a Lanczos sum-rule method as in Ref. [38].
The difference in�A

pol that comes from using theAV18þ
UIX or �EFT potential amounts to 0.134 meV and repre-
sents the uncertainty in nuclear physics. Both potentials are
tuned to fit the 3H binding energy, and they reproduce the

TABLE I. Nuclear polarization contributions to the 2S-2P
Lamb shift �E (in meV) in �D, compared to Pachucki [20].

Reference [20] This work

�ð0Þ
D1 �1:910 �1:907

�ð0Þ
L 0.035 0.029

�ð0Þ
T �0:012

�ð0Þ
C 0.261 0.259

TABLE II. Nuclear polarization contributions to the 2S-2P
Lamb shift �E (in meV) in �4Heþ.

AV18þ UIX �EFT

�ð0Þ �ð0Þ
D1 �4:418 �4:701

�ð0Þ
L 0.289 0.308

�ð0Þ
T �0:126 �0:134

�ð0Þ
C 0.512 0.546

�ð1Þ �ð1Þ
R3pp �3:442 �3:717

�ð1Þ
Z3 4.183 4.526

�ð2Þ �ð2Þ
R2 0.259 0.324

�ð2Þ
Q 0.484 0.561

�ð2Þ
D1D3 �0:666 �0:784

�NS �ð1Þ
R1pp �1:036 �1:071

�ð1Þ
Z1 1.753 1.811

�ð2Þ
NS �0:200 �0:210

�A
pol �2:408 �2:542
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4He binding energy to a few parts per thousand. They differ,
however, in their respective predictions for the nuclear
charge radius. Given the relations between the structure
functions and the charge radius [38], it is plausible that
the uncertainty in �A

pol can be reduced using the
4He charge

radius to constrain the nuclear potential models. This sys-
tematic uncertainty dominates the errors in predicting
�4Heþ polarization effects. The difference between the

two models divided by
ffiffiffi
2

p
gives a 4% error, which can be

interpreted as a 1� deviation from the central value. The
magnetic polarization is negligible in 4He [41]. Terms of
order ðZ�Þ6, relativistic corrections to polarizations
other than dipole, and higher-order nucleon-size effects
will be explored in the future. The sum of all these addi-
tional corrections is expected to be a few percent. In a
quadratic sum of all the errors mentioned above, we esti-
mate the accuracy of our calculation to be�6%. We did not
include the contribution from the disputed intrinsic nucleon
polarizability [11–13] because it can be estimated indepen-
dently of the nuclear Hamiltonian (see, e.g., Ref. [20,21]).

Conclusions.—We perform the first ab initio calculation
for the �4Heþ polarization correction, obtaining �A

pol ¼
�2:47 meV �6%. This result significantly improves the
accuracy and is close to the upper bound of previous
predictions �A

pol ¼ �3:1 meV �20% [16–18]. The theo-

retical accuracy is limited by the uncertainty in the nuclear
Hamiltonian, which is probed by using two different state-
of-the-art nuclear potentials. Exploring other choices for
potential parametrizations and including higher-order
�EFT forces can possibly narrow this uncertainty. Our
result allows a significant improvement in the precision
of hR2

ci that will be extracted from the �4Heþ Lamb shift
measurements planned for 2013.
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