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The U(1) gauge-Higgs model with two flavors of opposite charge and a chemical potential is mapped

exactly to a dual representation where matter fields correspond to loops of flux and the gauge fields are

represented by surfaces. The complex action problem of the conventional formulation at finite chemical

potential � is overcome in the dual representation, and the partition sum has only real and nonzero

contributions. We simulate the model in the dual representation using a generalized worm algorithm,

explore the phase diagram, and study condensation phenomena at finite �.
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Introduction.—In recent years, lattice QCD has turned
into a powerful quantitative tool in hadron physics.
However, one aspect where lattice methods still face seri-
ous technical obstacles is QCD at finite density. The reason
is that at finite chemical potential �, the action S is com-
plex, and the Boltzmann factor e�S cannot be used as a
weight factor in a Monte Carlo simulation.

For some lattice models, considerable progress was
made by mapping the system to new (dual) degrees of
freedom, where the partition sum has only real and positive
terms (see Refs. [1–8] for examples related to this work).
The dual variables are typically fluxes on the lattice that are
subject to constraints. The worm algorithm [9] is a power-
ful tool for updating such constrained systems.

In this Letter, we present a first proof of concept study
for a system with gauge and matter fields at arbitrary
couplings and finite density. We consider the U(1) gauge-
Higgs model with two flavors and chemical potential. The
corresponding dual representation is given in terms of
closed loops of flux for the matter fields and surfaces for
the gauge fields. For the Monte Carlo simulation, we
compare two techniques and show that the dual approach
successfully overcomes the complex action problem. We
explore the phase diagram and as illustrative examples
discuss Silver-Blaze types of transitions [10] and show
that they can be understood as condensation of the dual
variables.

U(1) gauge-Higgs model on the lattice.—We here con-
sider the model with two flavors of opposite charge
described by complex scalar fields �x; �x 2 C living on
the sites x of the lattice. The gauge fields Ux;� 2 U(1) live

on the links. Throughout this Letter, we use 4D Euclidean
lattices of size V4 ¼ N3

s � Nt with periodic boundary con-
ditions for all directions. The lattice spacing is set to 1; i.e.,
all dimensionful quantities are in units of the lattice spac-
ing. Scale setting can be implemented as in any other
lattice field theory and issues concerning the continuum
behavior are, e.g., discussed in Ref. [11]. We write the
action as the sum, S ¼ SU þ S� þ S�, where SU is the

gauge action and S� and S� are the actions for the two

scalars. For the gauge action, we use Wilson’s form

SU ¼ ��
X

x

X

�<�

ReUx;�Uxþ�̂;�U
?
xþ�̂;�U

?
x;�: (1)

The sum runs over all plaquettes, �̂ and �̂ denote the unit
vectors in the � and � direction, and the asterisk is used for
complex conjugation. The action for the field � is

S� ¼X

x

�
M2

�j�xj2 þ��j�xj4 �
X4

�¼1

½e���	�;4�?
xUx;��xþ�̂

þ e��	�;4�?
xU

?
x��̂;��x��̂�

�
: (2)

By M2
� we denote the combination 8þm2

�, where m� is

the bare mass parameter of the field � and �� is the

chemical potential, which favors forward hopping in time
direction (¼ 4 direction). The coupling for the quartic term
is denoted as ��. The action for the field � has the same

form as Eq. (2) but with complex conjugate link variables
Ux;� such that � has opposite charge. M2

�, ��, and �� are

used for the parameters of �.
The partition sum Z ¼ R

D½U�D½�;��e�SU�S��S� is
obtained by integrating the Boltzmann factor over all field
configurations. The measures are products over the mea-
sures for each individual degree of freedom.
Note that for �� � 0, Eq. (2) is complex; i.e., in the

conventional form, the theory has a complex action
problem.
Dual representation.—A detailed derivation of the dual

representation for the one-flavor model is given in Ref. [7],
and the generalization to two flavors is straightforward.
The final result for the dual representation of the partition
sum for the gauge-Higgs model with two flavors is

Z ¼ X

fp;j; �j;l;�lg
Cg½p; j; l�Cs½j�Cs½l�W U½p�W�½j; �j�W �½l; �l�:

(3)
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The sum runs over all configurations of the dual variables:
The occupation numbers px;�� 2 Z assigned to the pla-

quettes of the lattice and the flux variables jx;�; lx;� 2 Z
and �jx;�; �lx;� 2 N0 living on the links. The flux variables j
and l are subject to the constraints Cs [here 	ðnÞ denotes the
Kronecker delta 	n;0 and @�fx � fx � fx��̂]

Cs½j� ¼
Y

x

	

�X

�

@�jx;�

�
; (4)

which enforce the conservation of j flux and of l flux at
each site of the lattice. Another constraint

Cg½p; j; l� ¼
Y

x;�

	

�X

�<


@�px;�
 � X


<�

@�px;
� þ jx;� � lx;�

�

(5)

connects the plaquette occupation numbers p with the j
and l variables. At every link it enforces the combined flux
of the plaquette occupation numbers plus the difference of
the j and l flux residing on that link to vanish.

The constraints (4) and (5) restrict the admissible flux
and plaquette occupation numbers giving rise to an inter-
esting geometrical interpretation: The j and l fluxes form
closed oriented loops made of links. The integers jx;� and

lx;� determine how often a link is run through by loop

segments, with negative numbers indicating net flux in
the negative direction. The flux conservation (4) ensures
that only closed loops appear. Similarly, the constraint (5)
for the plaquette occupation numbers can be seen as a
continuity condition for surfaces made of plaquettes. The
surfaces are either closed surfaces without boundaries or
open surfaces bounded by j or l flux.

The configurations of the plaquette occupation numbers
and fluxes in Eq. (3) come with weight factors

W U½p� ¼
Y

x;�<�

Ipx;��
ð�Þ;

W �½j; �j� ¼
Y

x;�

1

ðjjx;�j þ �jx;�Þ! �jx;�!
Y

x

e��jx;4P�ðfxÞ; (6)

with fx ¼
P

�½jjx;�j þ jjx��̂;�j þ 2 �jx;� þ 2 �jx��̂;��, which

is an even number. The Ipð�Þ in the weights W U are

the modified Bessel functions, and the P�ð2nÞ in W �

are the integrals P�ð2nÞ ¼
R1
0 drr2nþ1e�M2

�
r2���r

4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=16�

p ð�@=@M2
�ÞneM

4
�
=4�½1� erfðM2

�=2
ffiffiffiffi
�

p Þ�, which

we evaluate numerically and prestore for the Monte Carlo
calculation. The weight factors W � are the same as the

W �, only the parametersM2
�, ��,�� are replaced byM2

�,

��, ��. All weight factors are real and positive. The

partition sum (3), thus, is accessible to Monte Carlo tech-
niques using the plaquette occupation numbers and the flux
variables as the new degrees of freedom.

Observables and Monte Carlo update.—In this explor-
atory study, we consider first and second derivatives of the
free energy as observables (for two-point functions and

spectroscopy in dual simulations; see, e.g., Ref. [8]). In the
dual language, the observables are mapped into weighted
sums over dual variables and their fluctuations [7].
The dual Monte Carlo update turns out to be rather

simple. A detailed description is given in Ref. [7], and
here we only introduce the key idea. The algorithm is
a generalization of the worm algorithm [9] to surfaces
with boundaries, and we refer to it as the surface worm
algorithm (SWA). The SWA starts with violating the con-
straints at a randomly chosen link Ldefect and the two sites
at its end points by changing the occupation number of
either the j or the l variable at Ldefect by�1. Subsequently,
the occupation number p of one of the six plaquettes
attached to Ldefect is changed such that the violation of
the constraint at Ldefect is healed. Furthermore, for two of
the other links of the plaquette, the constraints are kept
intact by changing the j or l fluxes on those links. Thus,
only at one link of the plaquette the constraints are still
violated, and this link is the new defect link Ldefect.
Iterating these steps, the SWA propagates the defect link
Ldefect through the lattice until it terminates by inserting a
final unit of j or l flux. Each step of the SWA is accepted
with a local Metropolis decision. We use an additional step
for updating loops of winding j-l flux, and the uncon-
strained variables �j and �l are updated with conventional
Metropolis sweeps.
We remark that for checking the correctness of the SWA,

we compare its results to a local algorithm in the dual
representation [7] and for �� ¼ �� ¼ 0 also to a simula-

tion in the conventional formulation.
Phase diagram at zero density.—We begin with the

analysis of the phase diagram and the properties of the
different phases for the case of vanishing chemical poten-
tials �� ¼ �� ¼ 0. This also serves as a test of the dual

approach which at zero density can be compared to a
conventional simulation. The other parameters are set to
M2

� ¼ M2
� ¼ M2 and �� ¼ �� ¼ 1 (fixed).

In Fig. 1, we show (left to right) the plaquette expecta-
tion value hUi, the expectation value hj�j2i ¼
1=V4@ lnZ=@M

2
�, and the particle number susceptibility

�n� ¼ 1=V4@
2 lnZ=@�2

� versus � and M2. We remark

that at � ¼ 0, the particle number vanishes but not �n� .

We use results from the dual approach for the 3D mesh
in Fig. 1, and for some of the parameter values, we super-
impose data from a simulation in the conventional formu-
lation to check the correctness of the dual representation
(see Ref. [7] for a detailed comparison in the one-flavor
case).
For large mass parameterM2, the matter fields decouple

and the system is expected to display the (very weak) first-
order transition of pure U(1) lattice gauge theory from the
confining phase to the Coulomb phase near �� 1. Indeed,
for the largest value M2 ¼ 8, we see the behavior of hUi
versus � as expected for the pure gauge case, and the
critical value of � is very close to 1 (we studied this in
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more detail using the plaquette susceptibility—figures not
shown). For vanishing �, the theory reduces to a charged
scalar field, which in the presence of a �4 term has a
transition to a Higgs phase. This strong first-order transi-
tion is very pronounced in all three observables for our
smallest coupling � ¼ 0:4. It can be located using the
maxima of the susceptibilities �U ¼ 1=6V4@

2 lnZ=@�2

and �j�j2 ¼ 1=V4@
2 lnZ=ð@M2

�Þ2, and with the inflection

point of �n� . The result of this analysis is Fig. 2.

The first-order line entering our range of parameters at
� ¼ 0:4 and M2 � 4:6 (separating the Higgs phase and
confining phase) shifts toward larger values of M2 for
increasing � until at �� 1:0, M2 � 6:6 the visible jump
in all three observables of Fig. 1 vanishes. From that point
on, a transition line that separates the confining phase and
the Coulomb phase continues toward the first-order tran-
sition of pure gauge theory discussed above, which is
visible in hUi and in hj�j2i (finer vertical scale is necessary

for the latter observable). In addition, we observe a tran-
sition line that separates the Higgs phase and the Coulomb
phase. It connects the branch point at �� 1:0, M2 � 6:6,
to � ¼ 1:4, M2 � 6:9 at the boundary of our parameter
range. Thus, we can distinguish three phases characterized
by different values of hUi, hj�j2i, and �n� (see the labeling

in Fig. 2).
We studied the different transition lines in Fig. 2 using a

finite size analysis of the second derivatives and histogram
techniques and found that the phase boundary separating
theHiggs phase and confining phase is strong first order; the
line separating the confining phase and Coulomb phase is of
weak first order, and the boundary between the Coulomb
phase andHiggs phase is a continuous transition.Our results
for the � ¼ 0 phase diagram are in qualitative agreement
with the conventional results for related models [12].
Analysis at finite density.—Let us now come to the case

of nonzero �� ¼ �� ¼ �> 0. Here the conventional

formulation fails, and we indeed need the dual approach
for obtaining results. In Fig. 2, we mark eight points
(labeled a to h) in parameter space where we conducted
simulations in the range � 2 ½0; 5�.
For five of them, points b, c, e, f, and g, we found very

similar behavior with a strong first-order transition as a
function of �, which is visible in hUi, n, and hj�j2i. As an
example, in the top row of Fig. 3 we show hUi, hj�j2i, and
n as a function of � for point b (� ¼ 0:75,M ¼ 5:73). All
three observables jump at � ¼ �c � 2:66 from values
characteristic for the � ¼ 0 confining phase to values
that correspond to the Higgs phase. We conclude that the
finite � transitions at the points b, c, e, f, and g lead into
the Higgs phase. This is consistent with the fact that finite
� at tree level changes the mass m2 ! m2 ��2, and thus
also M2 ! M2 ��2. This implies that for finite �, the
transition into the Higgs phase takes place for larger values
of M2, exactly as we observe. In other words, the phase
boundary of the Higgs phase folds toward larger M2 for
increasing �.
The points b, c, e, f, and g have in common that they

show a Silver-Blaze type of behavior [10] for their finite �
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FIG. 2 (color online). Phase diagram in the �-M2 plane at
� ¼ 0. We show the phase boundaries determined from the
maxima of �U and �� and the inflection points of �n. We also

mark points where we performed runs at finite � (plus signs
labeled a to h).

FIG. 1 (color online). The observables hUi, hj�j2i, and �n� (left to right) as functions of the inverse gauge coupling � and mass
parameter M2.
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transition: In the corresponding range of parameters, the
� ¼ 0 theory has a mass gap, and all observables are
independent of � until � reaches the value of the mass
of the lowest excitation. This behavior is clearly visible in
the top row of Fig. 3. Furthermore, the transition can be
seen to be accompanied by a condensation of dual varia-
bles. This is obvious from the top plot on the very right of
Fig. 3, where we show the average plaquette number p, the
average of fx ¼ P

�½jjx;�j þ jjx��̂;�j þ 2 �jx;� þ 2 �jx��̂;��,
and the average flux l4 in the 4 direction (normalized
with factors as given in the legend). All dual variables
jump from very small values to finite numbers at
�c � 2:66.

The situation is different for the points a, d, and h in the
Higgs phase. There we have a Goldstone mode, i.e., no
mass gap, and we expect a nontrivial � dependence for all
values of �. This behavior is evident in the bottom row of
plots in Fig. 3, where we show as a prototype example
the � dependence of the observables when starting from
the Higgs phase for point d (� ¼ 0:75, M2 ¼ 4:92). Here
we do not observe discontinuities but a roughly quadratic
behavior in�, which can again be understood from the fact
that the observables are essentially linear in �m2 (see
Fig. 1) and the mass shift m2 ! m2 ��2. Also, the dual
variables show a continuous behavior and do not condense
(bottom row, plot at the very right).

We currently explore the location of the phase bounda-
ries for a wide range of parameters, with the goal of an
ab initio study of the various phases suggested for the U(1)
gauge-Higgs system at finite � [13].

Conclusion.—In this exploratory study we have shown
that the use of dual variables to overcome the complex
action problem can be extended also to theories with gauge
and matter fields, giving rise to surfaces for the gauge fields

and loops that bound them for matter. The use of a gener-
alized surface worm algorithm allows for an efficient
update and the analysis of the full phase diagram. The
same structure of loops and surfaces is expected also for
theories where the bosonic matter is replaced by fermions
(although with additional minus signs for the loops). This
is due to the fact that the fermion determinant can be
expanded in loops dressed with gauge transporters and
integrating out the gauge fields is then done in the same
way as here. We expect that the techniques tested in this
Letter will be developed further and be useful also for other
systems with gauge and matter fields.
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