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We predict that oblique breathers can be generated by a flow of two-component Bose-Einstein

condensates past a polarized obstacle that attracts one component of the condensate and repels the other

one. The breather exists if intraspecies interaction constants differ from the interspecies interaction

constant, and it corresponds to the nonlinear excitation of the so-called polarization mode with domination

of the relative motion of the components. Analytical theory is developed for the case of small-amplitude

breathers that is in reasonable agreement with the numerical results.
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Introduction.—The flow of Bose-Einstein condensates
(BECs) past obstacles reveals a number of different
nonlinear excitations of the condensate. For example, in a
one-component condensate with the sound velocity cs the
flow is superfluid for velocities V satisfying the condition
M � V=cs <Mc (Mc � 0:37 for the flow past a disk in
two-dimensional geometry). For greater Mach numbers
M>Mc, vortices are generated by the flow, which means
loss of superfluidity [1–5]. Another channel of dissipation
opens, according to the Landau criterion, when the flow
velocity exceeds the sound velocity, that is, atM ¼ 1 [6,7].
In this case, the interference of Bogoliubov waves gener-
ated by a supersonic flow leads to formation of a so-called
‘‘ship-wave’’ pattern located outside the Mach cone [8,9].
Inside the Mach cone, the vortex streets are generated in
the flow velocity interval 1<M< 1:44, but for velocities
withM> 1:44, very specific oblique dark solitons [10] are
generated [11–13]. They have been observed in experi-
ments [14,15] with flows of polariton condensates past
obstacles. These nonlinear structures manifest themselves
as dips in the distributions of the condensate’s density.

The creation of two-component atomic [16,17] and
spinor polariton [18,19] condensates triggered extensive
research activity, both theoretical and experimental, cen-
tered around the nonlinear properties of two-species
superfluids [20,21]. One of the new properties of such
superfluids is the possibility of formation of topological
excitations [22,23]. Another specific feature of two-species
superfluids is the existence of two modes of motion that can
be called density and polarization waves—in the density
waves the two species move mainly in phase with each
other whereas in the polarization waves they move mainly
in counter phase. In the linear limit, there exist, correspond-
ingly, two types of sound waves, which in problems such as
a description of wave patterns generated by the flow past an
obstacle define two Mach cones and two types of ship
waves. The existence of two different types of excitations
in such a condensate suggests the possibility of two differ-
ent types of oblique dark solitons that may be generated

upon the interaction of condensate with a defect. However,
previously only one type of oblique dark soliton [24] has
been observed in the flow past a nonpolarized obstacle, i.e.,
the obstacle whose potential acts equally on both species of
the condensate. Such potential disturbs both species ‘‘in
phase,’’ thereby exciting only density waves with symme-
try similar to that of the potential. This suggests that
another, previously elusive, polarization mode can be
generated by a polarized obstacle that acts differently on
different species of the condensate. Such an obstacle can be
realized by generalization of the method used in the experi-
ments described in Ref. [8]. As is known [25], a laser beam
with a blue-detuned light frequency with respect to the
resonance atomic optical transition creates a repulsive po-
tential of the gradient force acting on atoms, and such a
beam was used in Ref. [8] for the formation of a cylindrical
obstacle that acted on the condensate flowing past it. If the
optical transitions from the states of atoms in different
species of a two-component condensate have frequencies
at different sides of the laser beam frequency, then such a
beam will be blue detuned for one component and red
detuned for another component. Hence, the gradient forces
will have opposite signs for different condensate compo-
nents, and such a beam will act as a polarized obstacle.
In this Letter, we study the properties of wave patterns

generated by the two-dimensional flow of a two-
component condensate past such a polarized obstacle and
demonstrate that in this case a previously unknown type of
excitation enters the scene—an oblique breather. One of
the most distinctive features of such breathers is that in
contrast to conventional dark-dark solitons generated by
nonpolarized potentials, the density distributions in two
components of the breather have different shapes with
deep out-of-phase modulation. The properties of oblique
breathers are studied numerically using two coupled
Gross-Pitaevskii (GP) equations and explained analytically
in the small-amplitude limit by reducing the GP system to a
modified Korteweg–de Vries (MKdV) equation for a
weakly nonlinear polarization mode.
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The model.—In the mean field theory, the dynamics of
two-component BEC is described by the system of GP
equations in standard nondimensional form

i
@c 1

@t
þ 1

2
�c 1 � ðg11jc 1j2 þ g12jc 2j2Þc 1 ¼ �1UðrÞc 1;

i
@c 2

@t
þ 1

2
�c 2 � ðg12jc 1j2 þ g22jc 2j2Þc 2 ¼ �2UðrÞc 2;

(1)

where Laplacian � acts on two spatial coordinates
r ¼ ðx; yÞ. We assume that the potential �kUðr; tÞ of the
obstacle is repulsive if �k ¼ 1 and attractive if �k ¼ �1.
In our simulations, it is modeled by the form UðrÞ ¼
U0 expð�r2=a2Þ with U0 ¼ 1:0, a ¼ 2. The nonlinear in-
teraction constants gik are positive. We assume that both
components have in an undisturbed uniform state the same
densities �1¼�2¼�0=2, where �1 ¼ jc 1j2, �2 ¼ jc 2j2,
and �0 is an undisturbed total density � ¼ �1 þ �2 at
jrj ! 1.

Linearization of the system (1) for a slightly disturbed
background state yields the dispersion relations for the
linear waves in the two-component condensate (see, e.g.,
Ref. [24]) !2

d;p ¼ c2d;pk
2 þ 1

4k
4, where

cd;p ¼ 1

2
ð�0fg11 þ g22 � ½ðg11 � g22Þ2 þ 4g212�1=2gÞ1=2

are the velocities of the density (cd, upper sign) and
polarization (cp, lower sign) waves, whereas !d;p are the

frequencies describing the temporal evolution of perturba-
tions / expð�i!d;ptÞ. The presence of two different veloc-
ities leads to the existence of two Mach cones defined by
the relations

sin�d;p ¼ cd;p
V

� 1

Md;p

; (2)

where Md;p ¼ V=cd;p are the corresponding Mach num-

bers; �d;p are the angles between the direction of the flow

and the lines representing the density and polarization
cones.

Oblique breathers.—In order to demonstrate the princi-
pal difference between wave patterns generated by non-
polarized (�1 ¼ �2 ¼ 1) and polarized (�1 ¼ ��2 ¼ 1)
obstacles, we solved the system (1) numerically for these

two cases using the input conditions c 1;2 ¼ ð�0=2Þ1=2 �
expðiVxÞ. Typical results are illustrated in Fig. 1. For the
nonpolarized obstacle the density ship waves are located
outside the density Mach cone, and a dark-dark soliton is
located inside it. Remarkably, the existence of the polar-
ization Mach cone is not manifested at all in the density
distributions of both condensate components—polarization
waves are not excited by the nonpolarized obstacle.
In sharp contrast, the polarized obstacle leads to much
richer dynamics and generates both density ship waves
(outside the outer Mach cone) and polarization ship waves

(outside the inner Mach cone). The density waves oscillate
in phase in both components that increases the amplitude
of oscillations in the total density, whereas the counter-
phase oscillations in the condensate components in the
polarization ship waves lead to cancellation of oscillations
in the total density. The polarized obstacle does not excite a
usual dark-dark soliton, but instead a more complicated
structure is generated in the vicinity of the polarization
Mach cone. We shall call this structure an oblique breather
since it can be related with time-dependent breather
solutions of the associated nonlinear evolution equations.
More detailed structure of the wave pattern generated by

the polarized obstacle can be seen in Fig. 2 representing the
density distributions along the y axis at fixed value of x
coordinate. The oblique breather can be represented as a
modulated nonlinear wave with counterphase nonlinear
oscillations of the condensate components. When its enve-
lope is much narrower than the distance between twoMach
cones, the space between the oblique breather and the
density ship waves is occupied by the polarization ship
waves clearly visible in Figs. 1 and 2. The parameters of
the oblique breather are determined by the parameters of
the incoming flow and those of the obstacle. The complete
cancellation of oscillations of the components in the total
density distribution occurs only if g11 ¼ g22; otherwise,
the linear eigenmodes correspond to a mixture of pure
density and polarization waves [26]. The most important
control parameter is the incoming flow velocity V. In Fig. 3
we illustrate the modifications in the wave pattern gener-
ated by the flow past a polarized obstacle with growth of V.
If V ¼ 1:3, then the breather is absolutely unstable, and
one observes the formation of vortex streets. If V ¼ 1:9,
then a clearly resolvable breather is formed, and further

FIG. 1 (color online). Distributions of the densities of the first
(left column) and second (central column) components, as well
as of total density (right column) for (a) nonpolarized obstacle
with �1 ¼ �2 ¼ 1, and for (b) polarized obstacle with �1 ¼ 1,
�2 ¼ �1. In both cases g11 ¼ g22 ¼ 1:0, g12 ¼ 0:6, V ¼ 2:3,
and t ¼ 160. Here and in Figs. 3 and 5 blue regions in the color
map indicate locations where density of the condensate is
minimal, while red regions correspond to highest densities.
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increase of velocity to V ¼ 2:3 changes only its inclination
angle with respect to the direction of the flow but does
not essentially change its parameters. We suppose that
this transition from a nonstationary vortex emission to a
stationary formation of oblique breather is physically simi-
lar to the transition from absolute instability of oblique
dark solitons to their convective instability studied in
Refs. [12,13,27] for the one-component BEC flow.

Analytical theory.—Although the exact breather solu-
tions of Eqs. (1) are unknown, we develop here the ap-
proximate theory for the small-amplitude breathers that
explains with reasonable accuracy the observed features
of new wave structures. To this end, we consider a one-
dimensional version of the system (1) that describes waves

propagating along the x0 axis. For the separation of density
and polarization modes, it is convenient to introduce a
spinor representation of the field variables [28]

c 1

c 2

 !
¼ ffiffiffiffi

�
p

ei�=2� ¼ ffiffiffiffi
�

p
ei�=2

cos�2 e
�i�=2

sin�2 e
i�=2

0
@

1
A; (3)

where � has the meaning of the velocity potential of the
in-phase motion; the angle � is the variable describing
the relative density of the two components [ cos� ¼
ð�1 � �2Þ=�], and � is the potential of the relative coun-
terphase motion. The densities of the condensate compo-
nents are given by �1 ¼ �cos2ð�=2Þ, �2 ¼ �sin2ð�=2Þ.
In the uniform quiescent state of BEC with equal densities
in the components, we can take � ¼ �0 ¼ �=2 and then
the small-amplitude waves correspond to small variations
of the relative density variable �0 � �� �0 and small
in-phase U ¼ �x0 and counterphase v ¼ �x0 velocities.
The perturbation theory [26] for polarization waves with
account of small dispersion and weak nonlinearity yields
then the evolution equation, which for g11 ¼ g22 � g12 has
the form of the MKdV equation for �0:

�0tþcp�
0
x0 �

3cpð9g11�g12Þ
8g12

�02�0x0 �
1

8cp
�0x0x0x0 ¼0: (4)

If its solution is found, then the other field variables are
expressed in terms of �0 by the formulas

�¼�0�
3c2p
2g12

�02; U¼�cpð3g11þg12Þ
2g12

�02; v¼2cp�
0:

(5)

The MKdV Eq. (4) has a variety of solutions, among
which there is the one-dimensional breather solution, pre-
sented in Ref. [29], which in our notations can be written as

�0 ¼� 2

cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g12

9g11�g12

s
@

@x0
arctan

�
�cosð�1þ�1Þ
	coshð�2þ�2Þ

�
; (6)

where

�1 ¼ 2	ðx0 � cptÞ � 	ð	2 � 3�2Þt=cp;
�2 ¼ 2�ðx0 � cptÞ � �ð3	2 � �2Þt=cp;
	 ¼ 
 cosq; � ¼ 
 sinq;

�1 ¼ p� q; �2 ¼ lnð2
 tanq=aÞ;

(7)

and p, q, 
, a are free parameters. This solution gives an
approximate description of the oblique breather pattern
found above numerically when it is transformed to the
appropriate reference frame and the parameters are chosen
in a proper way. The solution (6) is written in the reference
frame associated with a quiescent condensate, where the
breather propagates with the envelope velocity Vb ¼ cp þ
ð3	2 � �2Þ=ð2cpÞ and the carrier wave velocity Vc ¼ cp þ
ð	2 � 3�2Þ=ð2cpÞ along the x0 axis with the breather

FIG. 2 (color online). The distributions of densities in two
components (a) and total density (b) along the y axis at x ¼
100, t ¼ 160 [these distributions correspond to the dashed lines
in Fig. 1(b)].

FIG. 3 (color online). Distributions of the densities of the first
(left column) and second (central column) components as well
as of total density (right column) at t ¼ 160 for the velocity of
the flow V ¼ 1:3 (a), V ¼ 1:9 (b), and V ¼ 2:3 (c). In all cases,
g11 ¼ g22 ¼ 1:0, g12 ¼ 0:6.
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location line parallel to the y0 axis. We must transform it to
the reference frame with the obstacle located at the axes
origin, the condensate’s flow velocity directed along the x
axis, and the breather location line inclined with respect to
the x axis at some angle �b chosen in such a way that the
breather becomes a stationary structure in the new refer-
ence frame. The same transformation must compensate
both the envelope velocity and the carrier wave velocity,
Vb ¼ Vc, what gives q ¼ �=4. Besides that, these two
velocities must be compensated by the projection of the
flow velocity V sin�b on the x0 axis. This can be realized
only at cp þ 
2=ð2cpÞ ¼ V sin�b. After these transforma-

tions, the phases �1 and �2 must be replaced by �1 ¼
�2 ¼

ffiffiffi
2

p

 cos�bðy� x tan�bÞ and, as a result, the solu-

tion Eq. (6) transforms into the distribution of �0 in the
(x, y) plane. Substitution of �0ðx; yÞ into Eqs. (7) yields the
distributions of the other field variables.

It is convenient to express the parameter 
 in terms of
the maximal amplitude of the density envelope�� � j��
�0j ¼ 24
2=ð9g11 � g12Þ. As a result, we get, with account
of the expression c2p ¼ �0ðg11 � g12Þ=2, which is valid if

g11 ¼ g22, a useful relation between the breather angle �b

and the maximal envelope amplitude ��

sin�b ¼ 1

Mp

�
1þ 9g11 � g12

24ðg11 � g12Þ
��

�0

�
: (8)

Importantly, this formula predicts that the oblique breath-
ers are located outside the polarization Mach cone defined
by Eq. (2). Another important relation is given by the
dependence of the inverse width w ¼ 4� of the breather

on its amplitude ��, w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9g11 � g12Þ��=3
p

.
Numerically found dependence of the breather angle �b

as a function of V is shown in Fig. 4(a) by circles. As one
can see, it agrees with qualitative prediction that oblique
breathers are located outside the polarization Mach cone.
For comparison with the analytical formula (8) we

determined numerically the minimal density �min ¼
�0 � �� in the breather as a function of V which is plotted
in Fig. 4(b). Substitution of this �� into Eq. (8) yields the
dependence of �b on V which is shown in Fig. 4(a) by a red
line. It perfectly agrees with numerical values of �b at
velocities close to V � 2, however, the theoretical depen-
dence deviates from the numerical one for V * 3. We
explain this disagreement by the fact that at V ’ 3 the
breather’s width is of the same order as the distance
between the two Mach cones and the breather cannot be
considered as a structure well separated from other
excitations.
The above theory was developed for the case when

g11 ¼ g22. It is of considerable interest to study what
happens if g11 � g22. Corresponding results obtained by
direct solution of Eqs. (1) are presented in Fig. 5. Now the
counterphase oscillations of the densities of components
do not compensate each other, and the ship-wave pattern
becomes clearly visible in the distribution of the total
density. With increase of the difference g11 � g22, the
width of the oblique breathers also increases, but qualita-
tively the whole wave pattern remains the same. The
appearance of the density ship wave indicates a strong
mixing of the density and polarization modes. One could
expect that in situations with strong mixing of these two
modes due to spin-orbit coupling [30] the breatherlike
excitations could also be generated by a nonpolarized
obstacle. We have studied this situation numerically and
found that an account of the spin-orbit coupling changes
the conditions for generation of these wave structures, but
the flow past a nonpolarized obstacle still generates the
oblique solitons and the flow past a polarized obstacle
generates the oblique breathers.
Summarizing, we have predicted that new nonlinear

structures—oblique breathers—can be generated by a
flow of two-component condensates past polarized
obstacles.

FIG. 4 (color online). The inclination angle � (a) and depth
�min ¼ �0 ��� (b) of the oblique breather generated by the
flow of condensate past the polarized obstacle versus flow
velocity V at g11 ¼ g22 ¼ 1:0, g12 ¼ 0:6. In (a), the line with
circles shows numerical results, whereas the red solid line shows
the analytical prediction (8) for the inclination angle. The blue
region corresponds to the inner Mach cone, whereas the region
between inner and outer Mach cones is shown in gray.

FIG. 5 (color online). Density distributions generated by the
polarized obstacle at (a) g11 ¼ 1:1, g22 ¼ 0:9 and (b) g11 ¼ 1:2,
g22 ¼ 0:8. In both cases, V ¼ 2:3, t ¼ 160, and g12 ¼ 0:6.
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Szymanska, R. André, J. L. Staehli, V. Savona, P. B.
Littlewood, B. Deveaud, and L. S. Dang, Nature
(London) 443, 409 (2006).

[19] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West,
Science 316, 1007 (2007).

[20] D. J. Frantzeskakis, J. Phys. A 43, 213001 (2010).
[21] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299

(2013).
[22] H. Flayac, D.D. Solnyshkov, and G. Malpuech, Phys. Rev.

B 83, 193305 (2011).
[23] R. Hivet, H. Flayac, D.D. Solnyshkov, D. Tanese, T.

Boulier, D. Andreoli, E. Giacobino, J. Bloch, A.
Bramati, G. Malpuech, and A. Amo, Nat. Phys. 8, 724
(2012).

[24] Yu. G. Gladush, A.M. Kamchatnov, Z. Shi, P. G.
Kevrekidis, D. J. Frantzeskakis, and B.A. Malomed,
Phys. Rev. A 79, 033623 (2009).

[25] V. I. Balykin, V.G. Minogin, and V. S. Letokhov, Rep.
Prog. Phys. 63, 1429 (2000).

[26] A.M. Kamchatnov, Y. V. Kartashov, P.-É. Larré, and N.
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