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We prove two theorems concerning the time evolution in general isolated quantum systems. The theorems

are relevant to the issue of the time scale in the approach to equilibrium. The first theorem shows that there

can be pathological situations in which the relaxation takes an extraordinarily long time, while the second

theorem shows that one can always choose an equilibrium subspace, the relaxation to which requires only a

short time for any initial state.
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The recent renewed interest in the foundation of quan-
tum statistical mechanics and in the dynamics of isolated
quantum systems has led to a revival of the old approach by
von Neumann to investigate the problem of thermalization
only in terms of quantum dynamics in an isolated system
[1,2]. It has been demonstrated in some general or concrete
settings that a pure initial state evolving under quantum
dynamics indeed approaches an equilibrium state [3–10].
The underlying idea that a single pure quantum state can
fully describe thermal equilibrium has also become much
more concrete [11–13].

We must note, however, that in the general theories of the
approach to equilibrium [1–9], the issue of the time scale
required for the relaxation has not been fully addressed.
Usually a statement about the relaxation is proved for
‘‘sufficiently long (but finite) time,’’ but no concrete esti-
mates are made of how long the ‘‘finite time’’ will be.
Although there is an interesting attempt [14] to deal with
the time scale, we find their main result not very useful for
large systems [15]. If it happens that the required time is as
long as, say, the age of the Universe, the statement about the
approach to equilibrium may not be physically relevant.

In the present Letter we prove two theorems for a
general class of isolated macroscopic quantum systems.
Although the theorems may look somewhat artificial, they
are of direct physical relevance to the above mentioned
issue of the time scale as we shall explain below.

Our first theorem is a warning: it states that there always
exists an equilibrium subspace for which the relaxation to
equilibrium takes an extraordinarily long time. Although
this is nothing more than a purely theoretical ‘‘existence
proof,’’ it shows that the general theories [1–9] should be
supplemented by extra arguments that guarantee the nec-
essary time scale to be sufficiently short.

Our second theorem, which has the opposite character,
gives us a hope: it states that there can be an equilibrium
subspace for which any initial state approaches equilibrium
within a short amount of time. Although the subspace we
shall construct is artificial, it is expected that a realistic

equilibrium subspace shares some essential features with
our example.
We hope that the present results serve as a basis of future

investigation of the fundamental and important problem of
the approach to equilibrium [16].
Setup and background.—We consider an abstract model

for an isolated macroscopic quantum system in a large
finite volume V. A typical example is a system of N
particles confined in a box, where N=V is kept constant
when V becomes larger.

Let Ĥ be the Hamiltonian, and denote by Ej and jc ji the
eigenvalue and the normalized eigenstate, respectively, of

Ĥ, i.e., Ĥjc ji ¼ Ejjc ji. We focus on the energy interval

½U;Uþ �UÞ, where �U is small from the macroscopic
point of view but is still large enough to contain many
energy levels. It is convenient to relabel the index j so that
Ej 2 ½U;Uþ�UÞ for j ¼ 1; . . . ; D (and only for those).

We shall work with the Hilbert space H spanned by all
jc ji with j ¼ 1; . . . ; D, which is often called a micro-

canonical energy shell. The dimension D of the energy
shell typically behaves like D� eaV [17,18] with a con-
stant a > 0 which is independent of V.
To motivate our theorems, let us briefly describe the

problem of the approach to equilibrium. We shall basically
follow Refs. [2,6,7], but the discussion applies to other
settings. We recommend Ref. [2] as an accessible
exposition.
We first decompose the energy shell H into the equi-

librium and the nonequilibrium subspaces asH ¼ H eq �
H neq, where any state j’i that is close enough to H eq

represents the equilibrium state [19]. A state not close to
H eq represents a nonequilibrium state. Note that neither the

set of equilibrium states nor that of nonequilibrium states
forms a subspace of H . The subspace H eq occupies most

of the energy shellH in the sense that the dimension dneq of

the nonequilibrium subspaceH neq satisfies dneq � D. One

then easily finds that a typical state in the energy shell
represents the equilibrium state [20,21].

PRL 111, 140401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 OCTOBER 2013

0031-9007=13=111(14)=140401(5) 140401-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.140401


The next question is whether the approach to equilib-
rium can be understood from the quantum dynamics. We
start from a normalized initial state j’ð0Þi, which may not
be in H eq, and ask whether its time evolution

j’ðtÞi ¼ e�iĤtj’ð0Þi (1)

comes and stays, for most t, very close to H eq when t is

large.
In some settings (and under suitable assumptions), one

can prove that [3–9]

1

T

Z T

0
dth’ðtÞjP̂H neq

j’ðtÞi � 1 (2)

for sufficiently large T. Here and in the following P̂H 0

denotes the orthogonal projection onto a subspace H 0 of
H . The bound (2) implies that, within the time interval
½0; T�, the state j’ðtÞi spends most of the time in the close
vicinity of the equilibrium subspaceH eq. This establishes

the desired approach to equilibrium (apart from the issue of
the time scale).

The bound (2) is established for an arbitrary initial state
’ð0Þ 2 H in some works [6,7], and for an arbitrary ’ð0Þ
satisfying certain conditions in other works [3–5,8,9].
Let us note that, in order to account for the approach to
equilibrium in a real system, it is probably sufficient to
establish a relation like Eq. (2) for the set of physically
realizable initial states (at least those that typically arise),
which may be much smaller than the whole H .

Needless to say, the ‘‘sufficiently large’’ T associated
with the bound (2) should not be too long if the bound is to
be physically meaningful. This question of time scale is the
main issue of the present Letter.

Main theorems.—Let us state our first theorem. It shows
that, at least theoretically speaking, the required time scale
can be extraordinarily long.

Theorem 1.—For any dimension d with 0< d � D and
any state j�i 2 H , there exists a d-dimensional subspace
H 1 3 j�i such that for any normalized initial state
j’ð0Þi 2 H 1 one has [22]

1

T

Z T

0
dth’ðtÞjP̂H 1

j’ðtÞi � 3

�
> 0:95 (3)

for any T with

0< T � �

6�U
d: (4)

Suppose that the dimension d is of order ebV � D� eaV

with 0< b< a, which is typical for H neq. Then the right-

hand side of Eq. (4) can easily become much longer than the
age of the Universe, and Eq. (3) shows that j’ðtÞi cannot get
far from the subspace H 1 within this time scale.

Let us make two crucial remarks about the choice of
H 1. For these we assume that d � D and the Ej are

nondegenerate. We first note that H 1 can be chosen so
that any j’ð0Þi 2 H 1 satisfies the conditions required for

initial states in Refs. [3–5,8,9]. See the beginning of the
proof. We also note that H 1 can be chosen so that for any

j’ð0Þi 2 H one has T�1
R
T
0 dth’ðtÞjP̂H 1

j’ðtÞi � 1 for

sufficiently large T. (See the section ‘‘Energy eigenstate
thermalization for H 1’’ below for precise statements.)
But Eq. (4) shows that if j’ð0Þi 2 H 1 such T should be
at least of Oðd=�UÞ, which can be extraordinarily large.
We are not arguing that the nonequilibrium subspace

H neq generally shares this disappointing property with

H 1. We note that our H 1 is intentionally constructed so
as to ‘‘trap’’ its elements.
Nevertheless the theorem establishes that there always

exists a subspace which leads to an unphysically long
relaxation time. This makes explicit that the previous
general results [1–9] on the approach to equilibrium,
although being mathematically rigorous, are physically
incomplete; they must be supplemented by extra argu-
ments that guarantee that the required time scale is within
the physically acceptable range. To find such arguments,
either for general systems or for specific systems, is a
difficult but fascinating challenge in fundamental physics.
The second theorem, which has exactly the opposite

character from the first, perhaps provides a hint for such
an exploration. It states that there always exists a subspace
with a large dimension which is rarely visited and from
which it is easy to reasonably quickly escape.
To state the theorem we assume that there is a constant

c > 0 independent of V such that the density of states
within ½U;Uþ �UÞ is at least ecV [23].
Theorem 2.—For any T0 such that 0< T0�U �

f�U=ð2�0Þg2 (where �0 is defined in Ref. [23]), there exists
a subspaceH 2, whose dimension is d� ecV , such that for
any normalized initial state j’ð0Þi 2 H and any T > 0,
one has

1

T

Z T

0
dth’ðtÞjP̂H 2

j’ðtÞi � 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0�U

p �
1þ 2T0

T

�
: (5)

We shall choose the constant T0 so that T0�U � 1.
Note that the right-hand side of Eq. (5) becomes small

enough within a short time [24]. We stress that the bound (5)
is valid for any choice of the initial state. The theoremmakes
it clear that there can be a situation in which the scenario of
the approach to equilibrium in an isolated quantum system
works ideally.
Unfortunately our H 2 is constructed in a highly artifi-

cial manner, and there is no chance that it coincides with a
realistic nonequilibrium subspace H neq. What one would

like to show is that in some cases the subspaceH neq shares

essential features with H 2, in the sense that the approach
to equilibrium occurs on a reasonable time scale for most
initial nonequilibrium states, with ‘‘most’’ understood in a
sufficiently robust manner.
Preparations for the proof.—We expand the initial state

as j’ð0Þi ¼ P
D
j¼1 �jjc ji, where the coefficients satisfyP

D
j¼1 j�jj2 ¼ 1. Then the state at time t � 0 is

PRL 111, 140401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 OCTOBER 2013

140401-2



j’ðtÞi ¼ e�iĤtj’ð0Þi ¼ XD
j¼1

�je
�iEjtjc ji: (6)

Both H 1 and H 2 will be explicitly constructed below
as the subspace spanned by mutually orthogonal normal-

ized states j�ð�Þiwith � ¼ 1; . . . ; d. By expanding the basis

states as j�ð�Þi ¼ P
D
j¼1 �

ð�Þ
j jc ji, the overlap with Eq. (6) is

written as h�ð�Þj’ðtÞi ¼ P
D
j¼1ð�ð�Þ

j Þ	�je
�iEjt.

Let P̂ ¼ P
d
�¼1 j�ð�Þih�ð�Þj be the projection onto the

subspace spanned by j�ð�Þi with � ¼ 1; . . . ; d. This corre-

sponds to P̂H 1
or P̂H 2

. Then the time average in Eqs. (3)

or (5) is evaluated as

1

T

Z T

0
dth’ðtÞjP̂j’ðtÞi ¼ 1

T

Z T

0
dt

Xd
�¼1

h’ðtÞj�ð�Þih�ð�Þj’ðtÞi

¼ 1

T

Z T

0
dt

Xd
�¼1

XD
j;k¼1

�ð�Þ
j ð�ð�Þ

k Þ	


 �	
j�ke

iðEj�EkÞt

¼ DþO (7)

with the diagonal part

D ¼ Xd
�¼1

XD
j¼1

j�ð�Þ
j j2j�jj2; (8)

and the off-diagonal part

O ¼ Xd
�¼1

XD
j;k¼1
ðj�kÞ

�ð�Þ
j ð�ð�Þ

k Þ	�	
j�k

eiðEj�EkÞT � 1

iðEj � EkÞT : (9)

Finally we decompose the interval ½U;Uþ �UÞ into L
subintervals with the common width �U=L. For each ‘ ¼
1; . . . ; L, we denote by I‘ the set of j such that Ej is in the

‘th interval ½Uþ ð�U=LÞð‘� 1Þ; Uþ ð�U=LÞ‘Þ.
Proof of Theorem 1.—Here we take d ¼ L. We assume

for the moment that no I‘ is empty. The only requirement

for the basis state j�ð�Þi ¼ P
D
j¼1 �

ð�Þ
j jc ji is that �ð�Þ

j ¼ 0

whenever j =2 I�. The components of each basis state are
concentrated on a narrow energy interval as in the left-hand
side of Fig. 1. If d � D, one can obviously satisfy

j�ð�Þ
j j � 1, which is essentially the condition required in

Refs. [3–5,8,9].

It is easy to see that j�ð�Þi can be chosen so that the
subspace H 1 contains an arbitrary given state j�i ¼P

D
j¼1 �jjc ji. For each � with

P
j2I�

j�jj2 � 0, we set

�ð�Þ
j ¼

8><
>:
� P
j02I�

j�j0 j2
��1=2

�j; j 2 I�

0; j � I�:

(10)

For � with
P

j2I�
j�jj2 ¼ 0, we choose an arbitrary j�ð�Þi

that satisfies the previously mentioned requirement.

Let us write the initial state as j’ð0Þi ¼ P
d
�¼1 	�j�ð�Þi

with
Pd

�¼1 j	�j2 ¼ 1. The coefficient in the expansion

j’ð0Þi ¼ P
D
j¼1 �jjc ji is �j ¼ 	��

ð�Þ
j , where � is such

that j 2 I�. Then we see that

O ¼ Xd
�¼1

X
j;k2I�ðj�kÞ

j	�j2j�ð�Þ
j j2j�ð�Þ

k j2 e
iðEj�EkÞT � 1

iðEj � EkÞT

¼ Xd
�¼1

X
j;k2I�ðj�kÞ

j	�j2j�ð�Þ
j j2j�ð�Þ

k j2 sin½ðEj � EkÞT�
ðEj � EkÞT ; (11)

where we made use of the symmetry between j and k, and
replaced the summand with its real part. Note that the
function sinx=x is even, and decreasing for x 2 ½0; ��.
Suppose then that T�U=L < �. For any j, k 2 I�, one
has jEj � Ekj � �U=L, and hence

sin½ðEj � EkÞT�
ðEj � EkÞT � sin½T�U=L�

T�U=L
¼ R (12)

with 0<R< 1. Also note that

D ¼ Xd
�¼1

X
j2I�

j	�j2j�ð�Þ
j j4 � R

Xd
�¼1

X
j2I�

j	�j2j�ð�Þ
j j4: (13)

By substituting Eqs. (11) and (13) into Eq. (7), we find

1

T

Z T

0
dth’ðtÞjP̂j’ðtÞi � R

Xd
�¼1

(X
j2I�

j	�j2j�ð�Þ
j j4

þ X
j;k2I�ðj�kÞ

j	�j2j�ð�Þ
j j2j�ð�Þ

k j2
)

¼ R
Xd
�¼1

X
j;k2I�

j	�j2j�ð�Þ
j j2j�ð�Þ

k j2

¼ R: (14)

To get Theorem 1, we note that the condition (4) with
d ¼ L implies T�U=L � �=6, and we thus can take
R ¼ sinð�=6Þ=ð�=6Þ ¼ 3=�.

FIG. 1. Left: the basis state j�ð�Þi of H 1 is in a narrow energy
interval of width �U=L. Right: the basis state j�ð�Þi of H 2

spreads sparsely over the whole energy range.
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It is trivial to remove the assumption that all I� are
nonempty. If one of the I� happens to be empty, we simply
split a different I�0 (with jI�0 j � 2) into two sets in an
arbitrary manner, and repeat the above construction.

Energy eigenstate thermalization for H 1.—The condi-

tion that hc jjP̂H 1
jc ji � 1 for any j may be called the

‘‘energy eigenstate thermalization’’ for the subspace H 1.
It is easily found (see, e.g., Ref. [6]) that this condition and
the nondegeneracy of the energy eigenvalues Ej imply

1

T

Z T

0
dth’ðtÞjP̂H 1

j’ðtÞi � 1 (15)

when T is sufficiently large for any initial state j’ð0Þi. This
means that the state gets far from H 1 in the (very) long
run, spending most of its time near the complementary
‘‘equilibrium’’ subspace.

Note that hc jjP̂H 1
jc ji ¼ j�ð�Þ

j j2, where � is such that

j 2 I�. One can choose j�ð�Þ
j j2 to be extremely small for all

j provided that jI�j � 1. In this way we can construct
examples of H 1 for which the ‘‘approach to equilibrium’’
type statement (15) is valid, but only for T that is extra-
ordinarily large.

Proof of Theorem 2.—Here we shall define completely

different basis states j�ð�Þi. Let L be even and satisfy
�U=L � �0. For � ¼ 1; . . . ; d, and even ‘ ¼ 2; . . . ; L,
we choose jð�; ‘Þ 2 I‘ in such a way that jð�; ‘Þ �
jð�0; ‘Þ if � � �0. This is only possible if d � jI‘j for
all ‘ ¼ 2; . . . ; L. We thus choose d ¼ min‘jI‘j �
ð�U=LÞecV .

Then we define the basis states by

�ð�Þ
j ¼

8<
:

ffiffiffiffiffiffiffiffiffi
2=L

p
; if j¼ jð�;‘Þ for some‘¼ 2; . . . ;L

0; otherwise:
(16)

Thus the corresponding basis state j�ð�Þi spreads sparsely
over the whole energy interval ½U;Uþ �UÞ as in the right-
hand side of Fig. 1.

Then Eq. (8) is bounded as

D ¼ 2

L

Xd
�¼1

XL
‘¼2
ðevenÞ

j�jð�;‘Þj2 � 2

L

XD
j¼1

j�jj2 � 2

L
: (17)

To bound Eq. (9), we note that �ð�Þ
j ð�ð�Þ

k Þ	 can be non-

vanishing only when j ¼ k or jEj � Ekj � �U=L. Thus,

in Eq. (9), we have

��������e
iðEj�EkÞT � 1

iðEj � EkÞT
��������� 2

jEj � EkjT � 2L

T�U
: (18)

By further noting that

Xd
�¼1

XD
j;k¼1
ðj�kÞ

j�ð�Þ
j ð�ð�Þ

k Þ	�	
j�kj � 2

L

Xd
�¼1

XL
‘;‘0¼2
ð‘�‘0Þ

j�jð�;‘Þjj�jð�;‘0Þj

� Xd
�¼1

XL
‘¼2
ðevenÞ

j�jð�;‘Þj2 � 1; (19)

where we used the inequality j�jj�0j � ðj�j2 þ j�0j2Þ=2,
Eq. (9) can be bounded from above by 2L=ðT�UÞ.
Substituting this upper bound and Eq. (17) into Eq. (7),

we get [25]

1

T

Z T

0
dth’ðtÞjP̂j’ðtÞi � 2

L
þ 2L

T�U
: (20)

Since Eq. (5) is trivially satisfied if T0�U � 4, we assume
T0�U � 4. Let us choose L to be the smallest even number

greater than or equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0�U

p
. Noting that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0�U

p �
L � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0�U

p
, we get the desired bound (5). The assump-

tion 0< T0�U � f�U=ð2�0Þg2 guarantees the condition
�U=L � �0.
Discussion.—We have presented complete proofs of

the two theorems by explicitly constructing subspaces of
the energy shell H . Although our construction is quite
artificial, the two subspaces may be regarded as the repre-
sentatives of the pathological scenario and the ideal
scenario in the approach to equilibrium of an isolated large
quantum system.
The ‘‘pathological subspace’’ H 1 is spanned by basis

states j�ð�Þiwhose components are confined in very narrow
energy subintervals (see Fig. 1). Recalling that each energy
eigenstate evolves in time as e�iEjtjc ji, this means that the

overlap jh�ð�Þ; ’ðtÞij2 changes very slowly. This is the basic
mechanism of the ‘‘trap.’’
The ‘‘ideal subspace’’H 2, on the other hand, is spanned

by the basis states j�ð�Þi whose components are distributed
sparsely over the whole energy range (see Fig. 1). This

construction makes the overlap jh�ð�Þ; ’ðtÞij2 vary quickly
in time, producing the effective relaxation.
What about more realistic nonequilibrium subspaces?

We would of course like to show that they are like H 2, in
the sense that all (or at least most) initial states in them
relax to equilibrium in a reasonable amount of time. One
way of accomplishing this would be to find a useful con-
dition on a subspace that guarantees that this relaxation
occurs, and then to show that realistic nonequilibrium
subspaces satisfy this sufficient condition.
One might also want to show that most subspaces satisfy

this condition. This would be interesting even if one could
not show that realistic nonequilibrium subspaces do.
Finally, even without a useful sufficient condition, it

would be of value to establish that for most nonequilibrium
subspaces this relaxation occurs. Of course, it might be
hard to imagine how one could establish this sort of behav-
ior for typical subspaces without having found a useful
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sufficient condition for the behavior. Nonetheless, numeri-
cal simulations could well provide some evidence.

It is a pleasure to thank Takahiro Sagawa and Akira
Shimizu for valuable discussions.
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is not less than ðE0 � EÞecV .

[24] If we make the dependence to Planck’s constant explicit,
the prefactor in the right-hand side of Eq. (5) becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðT0�UÞp

. Thus even for �U� 10�4J and T0 � 1 s, the
factor is as small as 10�15. The ‘‘relaxation’’ in this
artificial example is too effective to be physically realistic.

[25] By noting that jEjð�;‘Þ � Ejð�;‘0Þj � j‘� ‘0j�U=ð2LÞ, we
can make a better estimate which enables us to replace
2L=ðT�UÞ in Eq. (20) with OðlogLÞ=ðT�UÞ.
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