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It has been hypothesized that topological structures of biological transport networks are consequences

of energy optimization. Motivated by experimental observation, we propose that adaptation dynamics may

underlie this optimization. In contrast to the global nature of optimization, our adaptation dynamics

responds only to local information and can naturally incorporate fluctuations in flow distributions. The

adaptation dynamics minimizes the global energy consumption to produce optimal networks, which may

possess hierarchical loop structures in the presence of strong fluctuations in flow distribution. We further

show that there may exist a new phase transition as there is a critical open probability of sinks, above

which there are only trees for network structures whereas below which loops begin to emerge.
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There has long been scientific interest in biological
transport networks, which are ubiquitous in living systems.
Blood vasculature and leaf venation are examples of such
networks. These networks may exhibit tree or loop struc-
tures, and afford great benefit to biological systems [1–4];
e.g., the elastic property of a leaf is intimately related to the
structure of its leaf venation [2]. These networks have been
studied in the optimization framework, where the energy
consumption within the networks is minimized under the
constraint of constant total material cost [3–7]. Assuming
that the material cost for an edge of the network is propor-
tional to a power lawC�, whereC is the conductance of the
edge, the work of Refs. [3–7] has shown that the optimal
networks exhibit a phase transition at � ¼ 1, with a uni-
form sheet [3,5,8] for � > 1 and a loopless tree for � < 1.
However, there are, in general, many loops in biological
transport networks [1–4,9]. Animals and plants may bene-
fit from loop structures in many ways. For example, loops
are important in mitigating damages of networks [3] and
optimizing energy consumption with fluctuating flow dis-
tributions [3,4].

Natural selection may give rise to optimal networks
[1–7,9]. However, optimization principles often are global
in nature and are silent about the mechanistic processes for
living systems to adapt to such optimal structures. For
blood circulation systems, it has been observed in experi-
ment that blood vessels can sense the wall shear stress [10]
and adapt their diameters according to the stress [11–14].
An adaptation process is described mathematically as a
dynamical system in response to changes of local wall
shear stress [11–14]. The previous modeling work showed
that the optimal vessel radius of a blood vessel tree can be
achieved through adaptation [15]. It has been found [13]
that the adaptation to wall shear stress can lead to topo-
logical changes of the vessel network structure, and this
adaptation is related to the optimization of energy

consumption of the network. An adaptive model is also
introduced in the study of the networks formed by slime
mold Physarum polycephalum [16], where networks at the
steady states of adaptation are compared with networks
with optimal total edge length.
In this Letter, we propose an adaptation dynamics in

response to local information for biological transport net-
works and study its relation to optimization principles.
First, we introduce a total energy consumption function
for a general class of biological transport networks. This
function is similar to those in Refs. [3–6]; however, it
includes material cost as part of the energy consumption.
Second, we construct an adaptation dynamics based on
experimental results. Third, in adaptation dynamics, we
incorporate flow fluctuations due to changes of the state of
flow sinks (sources), which are generally observed in bio-
logical transport networks. For example, in leaf venation,
fluctuations arise from the open-close switch of stomata
[3]; in circulation systems, it is a result of the flow regu-
lation of capillary flows, which also exhibit fluctuating
behavior [14]; flow fluctuations are also observed in the
network of a Physarum polycephalum [16]. We model
these general fluctuations by fluctuating flow sinks
(sources) at nodes of transport network and show that
they can be captured by a model with open probability p
for sinks (sources) in the network. In contrast to the general
global nature of optimization principle, we emphasize that,
in our model, the driving force of the adaptation depends
only on local information. For both cases of fixed- and
fluctuating-flow distribution, we show that the adaptation
dynamics in response to local information leads to a con-
tinuous decrease of the total energy consumption and
reaches an optimal network at the steady state.
What kind of configurations of optimal networks can be

achieved through adaptation is one of the central issues
of biological transport networks. As noted above, loops
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appear generally in biological transport networks under
fluctuating flow distributions. Our results show that loopy
networks can be stable under the adaptation and this may
give rise to the adaptation stability of loopy biological
structures, such as loops formed by arterial anastomosis.
For the network of the open-close switch type of sinks with
an open probability p, our numerical results indicate that
there may be a new phase transition at a critical value pc of
the open probability. Above pc, optimal networks are loop-
less, whereas below pc the loop density increases as p
decreases. Our results may provide new insight into how
fluctuations in flow distributions may impact optimal struc-
tures of transport networks through this newphase transition.

Flow distribution.—Tubes form the edges of many bio-
logical transport networks, and flows in the tubes are the
transport carrier. The Reynolds number in such a tube
(except, e.g., in large blood vessels [12]) is usually very
low and the flow is driven by the pressure drop on the two
ends of the tube, Q ¼ C�P, where Q is the flow rate, C is
the conductance, and �P is the pressure drop. The con-
ductance C is usually determined by the geometry of the
edge. For example, for a small blood vessel, which geo-
metrically can be regarded as a cylinder, the blood flow in
it can be well approximated by the Poiseuille flow. This
yields the vessel conductance C ¼ ð�D4=128�LÞ, where
� is the viscosity of the blood, D and L are the diameter
and length of the vessel, respectively. A leaf vein is usually
a bundle of small tubes with similar diameters; thus, for the
vein, C ¼ nC0 ¼ ð�D2

0D
2=128�LÞ, where n is the num-

ber of small tubes, C0 and D0 are the conductance and
diameter of a single tube, respectively. For a leaf venation,
there are flow sinks due to the evaporation process of
leaves [3]. For blood vasculature, the metabolic flow regu-
lation processes are capable of maintaining a relative
steady mean flow rate in capillaries [14,17]. This provides
the sinks for the arterial network and the sources for the
venous network. Once the conductance for all segments
and the flow sources and sinks are known, by analogy to an
electric circuit one can calculate the flow distribution using
Kirchoff’s law,

P
kðPk � PjÞCi ¼ sj, where P is the pres-

sure, k and j are the indices of the two end nodes of edge i,
Ci is the conductance of edge i, and sj is the given strength

of flow sink (or source) at node j. For nodes not connected
by an edge, the conductance between them is set to 0.

Energy consumption and adaptation.—In this work, we
are interested in the question of whether there is a common
mechanism, i.e., adaptation dynamics, in response to local
information that can evolve a biological transport network
to its optimal structure. Importantly, we require that the
driving force in adaptation be local, because communica-
tions can often be expensive. The energy consumption
function includes two parts,

E ¼ X

i

�
Q2

i

~Ci

þ c0 ~C
�
i

�
Li;

where c0 is a metabolic coefficient, the power � is an
intrinsic constant of the network, i is the index of an

edge, and Qi, Li, and ~Ci ¼ CiLi are the flow, the length,
and the conductivity of vessel i, respectively. The first part
of the energy consumption is the power that incurs in flow
delivery through the network. The second part is the mate-
rial and metabolic cost contained in the network and
the carrier such as blood cells. In Murray’s theory [18],
the metabolic cost for a blood vessel is proportional to the
number of blood cells in it, which is proportional to its

volume. Note that the volume is proportional to ~C1=2 in
this case; therefore, � ¼ 1=2 for blood vessel systems. For
leaf venations, the material cost may also be proportional to

the number of small tubes, which is proportional to ~Ci, and
the metabolic cost may be due to the effective loss of the
photosynthetic power at the area of thevenation cells,which

is proportional to ~C1=2
i . From this point of view, the effective

value of � for leaf venation may be between 1=2 and 1.
We note that the material cost is not regarded as a constraint
in our approach but as part of the energy consumption, and
the metabolic coefficient c0 is not a Lagrangian multiplier
but a measurable constant.
As discussed above, blood vessels can adapt their diam-

eters in response to local wall shear stress [12–14].
Adaptive responses are also observed in other biological
transport networks, such as Physarum polycephalum [16].
In previous works [12–14], a diameter-adaptation model of
vessels ðdD=dtÞ ¼ c0ð�w � �eÞD is used to explain experi-
mental results, where �w and �e are the real and constant
optimal wall shear stress, respectively.With the requirement
that the dynamics be equivalent to the diameter-adaptation
model for blood vessels in the sense of linearization and
satisfies that ðdE=dtÞ � 0, we propose an adaptation model
for general biological transport networks

d ~Ci

dt
¼ c

�
Q2

i

~C�þ1
i

� ~�2e

�
~Ci; (1)

where the termQ2
i =

~C�þ1
i is the driving stimulus of flow and

~�2e ¼ �c0 is the intrinsic decreasing stimulus. In particular,
in the case of blood vessels, the driving stimulus is the square

of wall shear stress, Q2
i =

~C�þ1
i ¼ �2w;i, and ~�e is the optimal

wall shear stress. As will be seen below, the quadratic form
of the adaptation model (1) can be naturally generalized
to include fluctuations in flow distributions. Because
ðdE=dtÞ< 0, the network reached at the steady state has a
minimal energy consumption and possesses an optimal
structure. One can also model adaptation dynamics with a
constraint of constant material and metabolic cost, then it
involves the nonlocal information ofLagrangianmultipliers.
Flow fluctuations.—As can be seen from Kirchoff’s law,

once the conductances of all edges are known, the flow in
an edge is determined by the state of sinks. As discussed
above, flow fluctuations at sinks (sources) appear generally
in biological transport networks. In the optimization
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model [3], a fixed source and a single moving sink, i.e., a
single randomly chosen sink at any particular time, is
introduced for each state, and the optimization [3] involves
the average effect of all different single-moving-sink
states. Conceptually, this study provides a possible expla-
nation for the existence of loops in transport networks. In
the optimization model [4], uncorrelated random ampli-
tudes of sinks are introduced. For a given distribution of
random sinks, it numerically examined the relation
between � and the loop density dl, which is defined as
the averaged ratio of the total number of loops in optimal
networks to the maximal possible number of loops. In our
work, we first assume that sinks are described by a general
random variable. Later we will show that this general class
of model can be captured by a model with open probability
only. Note that the time scale of fluctuations in flow dis-
tributions in biological transport networks is typically
much smaller than that of adaptation [3,14]. Therefore,
we can average the adaptation stimulus over all different
configurations as the effective adaptation stimulus and
obtain a deterministic dynamics

d ~Ci

dt
¼ c0

� hQ2
i i

~C�þ1
i

� ~�2e

�
~Ci; (2)

where h�i denotes averaging over all the configurations
with all possible combinations of states of sources and
sinks. In this case, the average energy consumption

function becomes �E ¼ P
iððhQ2

i i= ~CiÞ þ c2 ~C
�
i ÞLi. We can

again show that, under the adaptation dynamics (2), �E
decreases continuously and reaches optimal networks at
the steady state.

Clearly, Monte Carlo methods can be used in simulation
to take into account fluctuations. However, we will derive
an exact expression below for the averaged stimulus which
is useful in understanding the behavior of the system and in
designing fast numerical methods. Without loss of general-
ity, we consider N-node networks with only one source
node andN � 1 sink nodes. In this case, the states of all the
sinks determine the flow in the network. We assume that at
sink node k its random flow sk has a mean ek and variance
�2

k and that all the sinks are uncorrelated. DenotingQi;k the

flow through edge i in the single-sink state, i.e., only the
kth sink is open with sk ¼ 1, we can obtain the decom-
position hQ2

i i ¼
P

k�
2
kQ

2
i;k þ ðPkekQi;kÞ2, which gives the

averaged driving stimulus. In particular, if all the sinks are
identically distributed, ek¼e and�k¼� (k ¼ 2; 3; . . . ; N),
we have hQ2

i i ¼ �2
P

kQ
2
i;k þ e2 �Q2

i , where
�Qi is the flow

through edge i in the all-sink state in which all the sinks are
open with a unit flow rate sk. It is interesting to observe that
the averaged stimulus can be decomposed as a linear
combination of the stimulus for all single-sink states Q2

i;k

and the all-sink state �Q2
i . By dimensional argument, it can

be seen that different unit of the sink strength only leads to
a change in the unit of conductivity. The topological struc-
ture of the network depends only on the ratio �=e. This

observation allows us to study optimal networks of sinks
with this general randomness using the following model:
We introduce a uniform open probability p and a uniform
strength 1=

ffiffiffiffi
p

p
for all sinks and select them to be open

independently at each time according to the open proba-
bility. This network can be used to study the class of

networks with random sinks which satisfies �=e ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p=p

p
, and the averaged stimulus satisfies

hQ2
i i ¼ ð1� pÞX

k

Q2
i;k þ p �Q2

i : (3)

The all-sink case is obtained when p ¼ 1, and the single-
moving-sink case is obtained as p ! 0.
Simulation of adaptation dynamics.—The optimal struc-

tures are obtained from steady states of the adaptation
dynamics (1) or (2) in our simulations [19].
Now we address the important question of how the open

probability controls the optimal structures of the network.
First, for the all-sink state, the optimal network has a
treelike structure [Fig. 1(a)] for � < 1 and a uniform sheet
for � > 1, with a phase transition at � ¼ 1. For � < 1,
there is a great number of locally optimal structures which
can be obtained from different initial structures. This result
is similar to those reported in Ref. [6] and can be similarly
proven despite the different energy function used. Second,
treelike structures can be obtained not only for the all-sink
case but also for a large open probability. This can be seen
in Fig. 2(a), which displays the relation between the loop
density dl and the open probability for different �. As is
shown in Fig. 2(a), the loop density is on average a decreas-
ing function ofp for fixed�. Third, Fig. 2(a) suggests a high
order phase transition in the network structures because of
the existence of a critical open probabilitypc [also shown in
Fig. 2(b)], above which the optimal structure is loopless for
� < 1. Below pc, the network exhibits hierarchical struc-
tures with loops. Figure 1(b) shows one such case, which
resembles a leaf venation, full of small loops covering the

(a) (b)

FIG. 1 (color online). Optimal structures for fixed sinks and
fluctuating sinks. The width of an edge is proportional to ~C1=3.
The node at the bottom is the source point and the other nodes
are all sinks. All edges between neighboring grids are possible
edges of the network. In both cases, � ¼ 0:5. The initial con-
ductivities are given as 1þ d, where the perturbation d is
uniformly distributed in the interval ½�0:5; 0:5�. (a) Optimal
structure obtained for fixed sinks, which is a loopless tree.
(b) Optimal structure obtained with open-close-switching sinks
(p ¼ 0:025), which is covered by loops.
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entire network while maintaining an impression of treelike
major veins [20]. The critical open probabilitypc appears to
be an increasing function of � and it is also a slowly
increasing function of the size of the network with an
asymptotic limit as the network becomes large. The slope
of dl-p curves near the critical points becomes larger and
larger as � ! 1�. The dl-p curves also suggest a nonuni-
form convergence of dl as � ! 1� [21]. Fourth, for the all-
sink case (p ¼ 1), there is a phase transition at � ¼ 1.
Figure 2(b) shows that, for sufficiently large p, there is
also a rapid change in dl across � ¼ 1, whereas for very
small p, the change is smooth. Finally, we point out an
intuitive understanding of why dl decreases as p increases.
Note that, as p increases, the second term on the right-hand
side of Eq. (3) dominates. As a consequence, as p ! 1, the
behavior of optimal networks approaches that of the all-sink
case, which possesses only a tree structure.

In summary, we have presented a model to describe the
adaptation process of general biological transport networks
in the presence of fluctuations in sinks (sources). Under
this adaptation dynamics, the energy consumption of net-
works decreases and optimal structures are obtained as the
steady states of the adaptation. In other words, in order to
optimize the energy consumption, it is possible for a
biological system to evolve to an adaptation process which
responds only to local stimulus. In particular, loops are
found in optimal networks when there are sufficient strong
fluctuations in flow distribution. Comparing to the previous
models on the adaptation of blood vessels [12,13], we have
taken into account the effect of the open-close switch of
capillary flow [14]. Our results may suggest a possible
origin of the adaptation stability of anastomosis, which
has been observed experimentally in arterial systems to
form loops in arterial networks [12,13]. In contrast to the
previous adaptation model on the network formed by

Physarum polycephalum [16], our adaptation dynamics
has a natural energy dissipation relation.
Our work provides a relation between the open proba-

bility of sinks and the loop density of a network and reveals
a possible high order phase transition at the critical open
probability. Note that it is possible to measure the open
probability and area- or volumetric-loop density of a bio-
logical transport network in experiment. In addition, the
power � can be obtained by experimentally studying the
scaling relation of the conductivities (diameters) of parent
edges and their daughter edges in the network [7,18,22].
For example, Murray’s law [18] provides a cubic relation
between the diameter of a parent blood vessel and its two
daughter vessels, and from this one can infer � ¼ 1=2 for
blood vessel systems. Therefore, if one can relate the loop
density defined in this work to the area- or volumetric-loop
density, our relation between the loop density and the open
probability may help us to examine the validity of our
adaptation model and optimization principle for biological
transport networks.
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