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The space-and time-dependent response of many-body quantum systems is the most informative aspect

of their emergent behavior. The dynamical structure factor, experimentally measurable using neutron

scattering, can map this response in wave vector and energy with great detail, allowing theories to be

quantitatively tested to high accuracy. Here, we present a comparison between neutron scattering

measurements on the one-dimensional spin-1=2 Heisenberg antiferromagnet KCuF3, and recent

state-of-the-art theoretical methods based on integrability and density matrix renormalization group

simulations. The unprecedented quantitative agreement shows that precise descriptions of strongly

correlated states at all distance, time, and temperature scales are now possible, and highlights the need

to apply these novel techniques to other problems in low-dimensional magnetism.
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Understanding the emergent properties of many-body
quantum states is a central challenge of condensed matter
physics. Their response behavior, encoded in dynamical
structure factors, carries all the intricacies of strong corre-
lations even in relatively simple systems. In this context,
one-dimensional (1D) magnets have long been a preemi-
nent laboratory for developing new, more widely appli-
cable approaches and methods, as well as for seeking
correspondence between theory and experiments [1]. The
prototypical example is the spin-1=2 (S-1=2) Heisenberg
antiferromagnet (HAF), described by the Hamiltonian [2]

H ¼ J
X
j

Sj � Sjþ1; (1)

with nearest-neighbor exchange interaction J. Equation (1)
embodies the combined challenges of nonlinearity,
embedded in the spin commutation relations, and strong
ground-state fluctuations due to the small spin value. This
model was first tackled in 1931 by Hans Bethe who
obtained its eigenstates with the Bethe ansatz [3]. A full
understanding of this model has since then remained one of
the long-standing problems of condensed matter physics.
The complexity of its eigenstates has meant that, to date,
only a partial understanding of the dynamical response has
been achieved, which fails to provide sufficient accuracy or
coverage to be able to establish the behavior over the
relevant time and distance scales.

Here, we bring together crucial advances in theory,
based on integrability and time-dependent density matrix
renormalization group methods, to give a quantitative
description of the dynamical response of the 1D S-1=2

HAF which we compare with the measured spectra of a
model material. These new methods provide accurate cor-
respondence over the entire observable parameter range,
including finite temperatures, and allow for an unambig-
uous diagnosis of discrepancies in both experiments and
other approximate theoretical approaches. The combined
insights from these techniques have wide applicability and
provide a more general quantitative understanding of the
quantum properties of strongly correlated 1D systems.
Experimental details and methods.—To compare the

different theoretical approaches with high-accuracy data,
we performed inelastic neutron scattering on the prototyp-
ical 1D S-1=2HAFKCuF3. In this compound, orbital order
[4] provides strong Heisenberg coupling (J ¼ 33:5 meV)
between the Cu2þ (S-1=2) ions in the c direction. KCuF3
has a long history in the study of the 1D S-1=2 HAF. The
energy and wave vector dependence of the characteristic
spinon continuum [5–8], as well as the presence of univer-
sal scaling behavior indicating proximity to the Luttinger
liquid quantum critical point were established for the first
time in KCuF3 [9]. In addition, weak interchain coupling
was shown to modify the low energy spectrum and, below
the Néel temperature of TN ¼ 39 K, the existence of low
energy spin waves and a novel longitudinal mode were
found to accompany symmetry breaking [10–14]. For
energies greater than 30 meV, the behavior of KCuF3 is
entirely 1D.
Inelastic neutron scattering (INS) is the most powerful

method to analyze magnetic dynamics because the mea-
sured cross section yields the dynamical structure factor
(DSF) as a function of momentum k and energy @!,
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Sabðk;!Þ ¼ 1

N

XN
j;j0

e�ikðj�j0Þ Z 1

�1
dtei!thSaj ðtÞSbj0 ð0Þi; (2)

where N is the number of sites, and a, b ¼ x, y, z. INS data
sets of KCuF3 were collected at temperatures T ¼ 6, 50,
75, 150, 200, and 300 K using the MAPS spectrometer
at the ISIS Facility, Rutherford Appleton Laboratory, U.K.
To make comparison with theory, we simulated the experi-
ment based on the theoretical Sðk;!Þ (see Supplemental
Material [15]). Figure 1(a) shows the experimental DSF
for T ¼ 6 K as a function of momentum along the chain
and energy. It reveals the characteristic multispinon con-
tinuum of the 1D S-1=2 HAF and is in excellent agreement
with the Bethe ansatz solution for T ¼ 0 K [Fig. 1(b)]
described later. Since the data are normalized to absolute
units no overall scale factor was required when comparing
theory and experiment.

Previous theoretical approaches.— The ground state of
the 1D S-1=2 HAF is quantum disordered with power-law
correlations. The important low-lying excitations [16]
which define the DSF (2) are known as spinons [17] and
can be pictured as Néel domain walls dressed by quantum
fluctuations. They carry fractional spin (S-1/2) which
restricts them to being created in (multiple) pairs, and
they disperse according to ð�=2ÞJj sinkj. The simplest
observable continuum, made from two spinons, fills the
region !lðkÞ � ! � !uðkÞ between the lower and upper
boundaries

!lðkÞ ¼ �

2
Jj sinkj; !uðkÞ ¼ �J

��������sin
k

2

��������;
k 2 ½0; 2��: (3)

The four-spinon continuum also has a lower threshold at
!lðkÞ as do arbitrary 2n-spinon states.

Because of the long-term absence of precise calculations
for the DSF of the 1D S-1=2 HAF, finite-size exact diag-
onalization results, sum rules, and the spinon dispersions

were combined into a phenomenological formula at
T ¼ 0 K—the so-called Müller ansatz [18],

SMAðk;!Þ ¼ AMA

�ð!�!lðkÞÞ�ð!uðkÞ �!Þ
½!2 �!2

l ðkÞ�1=2
; (4)

where AMA ¼ 289:6=�. This formula, though historically
important due to its simplicity, is inexact.
Bosonization [1] can also be used to approximate the

DSF at k ¼ 0, �, where the spinon dispersion is linear and
the system can be described as a Luttinger liquid (LL) [19].
Finite temperatures are then straightforwardly treated,
giving the DSF around k ¼ �þ �k as

SLLð�þ�k;!;TÞ¼ eð@!=kTÞ

eð@!=kTÞ �1

ALL

T

� Im

�
�

�
!þvF�k

4�T

�
�

�
!�vF�k

4�T

��
;

(5)

where �ðxÞ � �ð1=4� ixÞ=�ð3=4� ixÞ, vF ¼ ð�=2ÞJ is
the Fermi velocity and ALL is a constant [20]. This
approach is not applicable at generic momenta.
Recent work making use of nonlinear LL theory [21,22]

allows the threshold behavior at all k to be obtained for
T ¼ 0 K [23,24]. At k ¼ � and low energies it becomes a

power law with logarithmic corrections, Sðk¼�;!!0Þ�
ð1=!Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1=!Þp
, changing at k � � to Sðk � �;! !

!lðkÞÞ � ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�!lðkÞ

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=ð!�!lðkÞÞÞ

p
for frequen-

cies ! close to the lower threshold !lðkÞ. There is no
obvious extension of this result to finite temperatures.

FIG. 1 (color online). INS data compared to theory. (a)
The data show the multispinon continuum lying predominantly
between the upper (!uðkÞ) and lower (!lðkÞ) boundaries for
2-spinon processes (gray lines). (b) The dynamical structure
factor computed via the algebraic Bethe ansatz.
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FIG. 2 (color online). Comparison of the INS data at k ¼ �
and T ¼ 6 K, with the theoretical approaches. (a) The data agree
approximately with the Luttinger liquid, Müller ansatz, and
algrebraic Bethe ansatz. (b) Differences between the theories
increase at higher energies and the Luttinger liquid and Müller
ansatz show strong discrepancies with the data near the 2-spinon
upper threshold.
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Comparison of these theories for T ¼ 0 K to the lowest
temperature (T ¼ 6 K) KCuF3 INS data.—Figure 2 shows
the data at k ¼ � and T ¼ 6 K as a function of energy
compared to the Müller ansatz and Luttinger liquid theory
at T ¼ 0 K. The measured intensity behaves approxi-
mately as the power law Sð�;!Þ � 1=!� (� ¼ 1), indicat-
ing proximity to the LL quantum critical point. Below
�30 meV the correlations become increasingly modified
from 1D to 3D due to interchain coupling, thus deviations
from 1D theories are expected. Above 30 meV however,
KCuF3 is completely dominated by 1D behavior. Both
theories systematically overestimate the scattering at high
energies showing clear quantitative differences from the
data. The LL is a continuum field theory and is hence
unable to capture the upper cutoff intrinsic to the finite
lattice spacing; it thus becomes imprecise for higher ener-
gies. In the case of the Müller ansatz the predicted stepwise
upper cutoff at !uðkÞ is clearly incorrect. The Müller
ansatz is also inaccurate at other wave vectors. The con-
stant energy cuts in Fig. 3 show that it systematically
overestimates the scattering for all energies above
55 meVand is inaccurate everywhere except near the lower
continuum boundary.

The cuts at different wave vectors (k � �) in Fig. 4
reveal threshold singularities at the lower boundary !lðkÞ
of the continuum. These are x-ray-edge-type singularities
with power-law correlations extending to positive energies.
Comparison to the nonlinear LL picture reveals that this
theory is increasingly inaccurate as k goes further from �.
The linear LL picture can also be applied at finite

temperatures although only in the region near k ¼ �
[20]. As shown in Fig. 5, where it is compared to higher
temperature KCuF3 data, it works approximately for tem-
peratures up to � 100 K, but for larger temperatures more
accurate descriptions are clearly necessary.
Bethe ansatz approaches for T ¼ 0 K.—Two

approaches based on the exact solvability of the 1D
S-1=2 HAF Eq. (1) have recently provided much more
reliable calculations of the ground state DSF. First, the
Heisenberg model displays an emergent quantum group
symmetry in the infinite system size limit N ! 1. This is
exploited in the vertex operator approach [25] to obtain
eigenstates and matrix elements of spin operators. The
2-spinon contribution to Eq. (2) computed using this
approach [26,27] yields 72.9% of the integrated sum rule
and 71.3% of the first frequency moment [28]. The remain-
ing signal is carried by 4; 6; 8; . . . spinon states. Matrix
elements of spin operators between ground- and
4-spinon states [29] can be assembled into the 4-spinon
contribution to the DSF [30], remarkably yielding (along
with 2-spinon part) about 98% of the DSF in the thermo-
dynamic limit.
The second integrability-based approach uses the alge-

braic Bethe ansatz [31], exploiting exact finite-size matrix
elements of spin operators [32] which can be resummed
[33–35] over relevant excitations [36,37] (i.e., arbitrary
numbers of spinons) to obtain precise results for large
systems (over 99% saturation for 500 sites), for arbitrary
field and anisotropy. The algebraic Bethe ansatz and vertex
operator approaches give identical results (up to finite-size
corrections and imperfect saturations) for the ground-state
correlations.
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The Müller ansatz strongly differs from the data above
55 meV. The relative importance of multispinon processes can
be determined using the Bethe ansatz (vertex operator approach).
The 2-spinon process alone clearly underestimates the scattering,
highlighting the importance of including higher-spinon terms.
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FIG. 4 (color online). 6 K data plotted as a function of energy
for different wave vectors. Threshold singularities occur across
the Brillouin zone at !lðkÞ. These are compared to the algebraic
Bethe ansatz and the nonlinear Luttinger liquid theory. The black
arrows indicate the 2-spinon upper threshold !uðkÞ.
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Comparison of the T ¼ 0 K Bethe ansatz approaches to
the lowest temperature (T ¼ 6 K) KCuF3 INS data.—As
shown in Figs. 1–4 these theories provide excellent quan-
titative agreement over all energies and wave vectors.
Unlike the Müller Ansatz and Luttinger liquid field theory,
the integrability-based algebraic Bethe ansatz at k ¼ �
(Fig. 2) demonstrates the correct analytic behavior at the
2-spinon upper boundary providing a quantitative descrip-
tion of the truncation of spinon states. The vertex operator
approach is compared to the constant energy cuts (Fig. 3)
and unlike the Müller ansatz provides accurate agreement
with the measurements throughout the Brillouin zone
including at highest energies. The vertex operator approach
can also be used to assess the relative importance of 2-and
higher-spinon contributions to the scattering. Considering
only 2-spinon processes (dashed line), shows marked dif-
ferences from the measurements above 30 meV and away
from k ¼ 0, �. Therefore, as suspected in Ref. [38], and
very recently shown in Ref. [39], higher-order spinon
processes must be included. Finally, unlike the nonlinear
LL field theory, the Bethe ansatz computations are able to
capture the threshold singularities quantitatively through-
out the Brillouin zone (Fig. 4). Furthermore, they also
agree with the cutoff from 2-spinon processes at the upper
threshold, which is not a Müller ansatz type step function
but a square-root cusp.

tDMRG for finite temperatures.—The problem of the
finite-temperature DSF remains for the moment inacces-
sible to these exact integrability-based methods. However,
finite-temperature response functions of 1D systems, like
hSaj ðtÞSbj0 ð0Þi in Eq. (2), can be evaluated in a quasiexact

manner up to some maximum reachable time tmax on the
basis of the time-dependent density matrix renormalization
group (tDMRG) [40–42]. A corresponding scheme, intro-
duced in Ref. [43], is based on a sequence of imaginary-
time and real-time evolutions during which the occurring

many-body operators are approximated in matrix product
form. As described in Refs. [43,44], one can use linear
prediction [45,46] to extend the obtained data from the
time interval [� tmax, tmax] to infinite times before doing
the Fourier transform in Eq. (2) that yields the DSF. A
difficulty in the DMRG simulations is the (typically linear)
growth of entanglement with time [47–49]. In tDMRG
calculations, this leads to a severe increase of the compu-
tation cost and strongly limits the maximum reachable
times tmax. It is only due to a novel, much more efficient
evaluation scheme for the thermal response functions
[50–52] that we are now able to reach sufficiently large
tmax such that the linear prediction becomes very accurate
and precise structure factors can be computed.
The tDMRG simulations compared to finite temperature

KCuF3 INS data.—The results shown in Fig. 5, give the first
application of this optimized tDMRG scheme [50,51] to
determine the full momentum- and energy-dependence of
the DSF at T > 0. The simulations were carried out with
systems of 129 sites and a DMRG truncation weight [53] of
10�10, guaranteeing negligible finite-size and truncation
effects. The tDMRG results clearly provide an excellent
description of the experimental cross section without adjust-
able parameters except at lowest energies where the inter-
chain coupling is significant. Asmentioned before, the linear
LL theory allows finite temperature comparison at k ¼ �;
however, the assumption of a linear dispersion results in
strong discrepancies at higher energies and temperatures.
In contrast, tDMRG is able to accurately describe the system
over the full energy and temperature range. It also provides
an accurate description of the INS data throughout the
Brillouin zone (not just at k ¼ � as for the LL theory).
Conclusion.—Detailed comparison to high-quality

inelastic neutron scattering data shows the inadequacy of
conventional approximations for the dynamic structure factor
of the 1D S-1=2 HAF. Instead, excellent agreement is found
with new theories based on exact solutions. These compari-
sons directly show the importance of computing cross
sections beyond 2-spinon terms, and the correct fitting of
the high-energy cutoffs. Furthermore we have shown that
the data at finite temperatures can be modeled by a novel
DMRG method, giving excellent agreement over the full
temperature, energy, and wave vector range. This Letter
demonstrates that the combination of integrability and
DMRG calculations provides a solution to the long-standing
problem of the response of the 1D S-1=2 HAF over all
experimental parameters. We anticipate that these powerful
techniques will in the future be successfully applied to other
problems in low-dimensional magnetism as they allow for
unambiguous identification of deviations due to experimental
phenomena [54] and approximations in other theoretical
approaches.
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FIG. 5 (color online). Finite temperature behavior. (a) INS
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