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We present an extensive quantum Monte Carlo study of the Néel to valence-bond solid (VBS) phase

transition on rectangular- and honeycomb-lattice SU(N) antiferromagnets in sign-problem-free models.

We find that in contrast to the honeycomb lattice and previously studied square-lattice systems, on the

rectangular lattice for small N, a first-order Néel-VBS transition is realized. On increasing N � 4, we

observe that the transition becomes continuous and with the same universal exponents as found on the

honeycomb and square lattices (studied here for N ¼ 5, 7, 10), providing strong support for a deconfined

quantum critical point. Combining our new results with previous numerical and analytical studies, we

present a general phase diagram of the stability of CPN�1 fixed points with q monopoles.
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The study of quantum critical points (QCPs) has seen a
lot of excitement in both recent theoretical [1] and experi-
mental work [2,3]. The most novel QCPs are those that do
not have simple classical analogues in one higher dimen-
sion. One of the most prominent examples of such a QCP is
the direct continuous ‘‘deconfined’’ critical point (DCP)
between Néel and valence-bond solid (VBS) phases in
bipartite SU(N) antiferromagnets [4]. Both states of matter
are characterized by conventional broken symmetries, the
Néel state by SU(N) symmetry breaking and the VBS by
lattice symmetry breaking. A naive application of Landau
theory would predict that since the two phases break dis-
tinct symmetries, a direct Néel-VBS transition cannot be
continuous. However, by a subtle conspiracy of quantum
interference and deconfinement, it has been shown that a
continuous transition beyond the Landau paradigm can
occur [5]. While the deconfined theory is by itself specu-
lative (a ‘‘scenario’’), the discovery of sign-problem-free
models has allowed for unbiased tests by quantum
Monte Carlo calculations of the theoretical proposal on
large two-dimensional lattice models, in a way unprece-
dented for an exotic quantum critical phenomenon [6].

The speculative assumptions that underlie the DCP con-
cept concern the existence and stability of certain critical
fixed points. The DCP idea builds on the CPN�1 descrip-
tion of bipartite two-dimensional SU(N) quantum antifer-
romagnets [7]. The CPN�1 field theory consists of N
complex scalars z� interacting with a U(1) gauge field
a�. Destructive interference from Berry phases results in

the suppression of monopoles in a� unless they have a

charge q [8]. A central result is that q in the simplest cases
(of interest here) is equal to the degeneracy of the VBS
phase [7], so the square lattice has q ¼ 4, the honeycomb
lattice has q ¼ 3, and the rectangular lattice has q ¼ 2.
The discussion so far is on firm grounds. The two specu-
lative ingredients that allow for a deconfined quantum

critical point between Néel and VBS states in SU(N)
antiferromagnets on lattices with q-fold degenerate VBS
state are (1) the existence of a critical fixed point in the
‘‘noncompact’’ monopole-free CPN�1 theory [9] (this will
be referred to as nc-CPN�1) and (2) the ‘‘dangerous irrele-
vance’’ of q-monopole insertions at the nc-CPN�1 fixed
point. If these two conditions are met, the resulting
‘‘deconfined’’ renormalization group (RG) flow diagram
[10] is as shown in Fig. 1(a).
The most extensive studies of deconfined criticality in

microscopic models have focused on the case N ¼ 2 and
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FIG. 1 (color online). (a) Deconfined RG flow diagram for
SU(N) antiferromagnets with q-fold degenerate VBS phases, in
the field theoretic space of monopole fugacity for q monopoles
(�q) and the tuning parameter g of the critical point (see the text

and Ref. [10] for details). In this work, we give a complete phase
diagram in q-N space for which this RG flow diagram can be
realized (see Table I). (b)–(d) Couplings of Eq. (1): (b) The
honeycomb lattice with J1 and J2. (c) The rectangular lattice
with Jx1 , J

y
1 , and J2. (d) TheQ interaction shown is used here only

on the rectangular systems. The A and B sublattices (black and
white sites) have SU(N) spins transforming in the fundamental
and conjugate to fundamental representations, respectively.
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q ¼ 4 [11–15] [i.e., the square lattice with SU(2) spins].
Other studies have tackled the cases q ¼ 4, 2 � N � 12
[16–19] [square lattice with SU(N) spins] and N ¼ 2,
q ¼ 3 [20] [the honeycomb lattice with SU(2) spins].
The nature of the transition in the q ¼ 1 limit for N ¼ 2
by studying the classical nc-CPN�1 model in three dimen-
sions has been debated extensively [21–24]. We shall
extend the studies of deconfined criticality by studying
the case q ¼ 2 (rectangular lattice) and q ¼ 3 (honey-
comb) for N � 10. Our main conclusions are as follows:
We find clear evidence that the Néel-VBS transition on the
rectangular lattice (q ¼ 2) is first order for N ¼ 2, 3 and
continuous for N � 4. We find that the anomalous dimen-
sions (�N and �V) for N ¼ 5, 7, 10 are in agreement with
each other on the rectangular lattices (q ¼ 2), honeycomb
lattices (q ¼ 3), and square lattices (q ¼ 4), all of which
are consistent with the analytic 1=N expansion for the
nc-CPN�1 model (q ¼ 1) (see Fig. 5). Finally, combining
our new results with existing work, we suggest a general
phase diagram for the values of N and q for which
the deconfined RG flow in Fig. 1(a) is realized and a
continuous deconfined Néel-VBS transition can occur
(see Table I).

Model.—We consider bipartite SU(N) antiferromagnets
in which the spins on the A sublattice transform under the
fundamental representation of SU(N) while those on the B
sublattice transform under the conjugate to the fundamen-
tal representation used fruitfully in both past analytic
[25,26] and numerical [27,28] studies. Following previous
work reviewed in detail in Ref. [6], we can construct
sign-problem-free Hamiltonians that maintain the SU(N)
symmetry from two operators, a projection operator

P ij ¼
P

N
�;�¼1 j��iijh��jij (with i and j on opposite sub-

lattices) and a permutation operator�ij¼
P

N
�;�¼1 j��iij�

h��jij (with i and j on the same sublattice). The

Hamiltonian we will study can be written in the following
very general form:

H ¼ �X

i;j

Jij1
N

P ij �
X

i;j

Jij2
N

�ij �
X

pl

Qij;kl

N2
P ijP kl: (1)

Illustrations of how each of the terms appears are shown in
Figs. 1(b)–1(d). For smallN, the J1 only models are always
Néel ordered, and for large N, they are always VBS
ordered. To study the Néel-VBS transition at fixed N, we
use the J2 and Q terms. As studied previously, the J2
interaction strengthens the Néel state by favoring
ferromagnetic order on each of the sublattices [18], while
the Q interaction favors the VBS phase by preferring
the plaquettes to enter singlet states [11]. With the
Hamiltonian so defined, we can study all the Néel-VBS
phase transitions of interest, as we detail below. We
shall study the model Hamiltonian using the unbiased
and powerful stochastic series expansion quantum
Monte Carlo method [29]. Details of the observables are
provided in the Supplemental Material [30].
Rectangular lattice.—We begin by studying the phase

transition between the Néel state and a q ¼ twofold
degenerate VBS as a function of N. We study Eq. (1) on
a rectangular lattice [see Fig. 1(b)], where the couplings are
chosen to have rectangular symmetry, i.e., are invariant
under translation in x and y but break the �=2 rotation
symmetry that would be present on a square lattice. On
such a lattice, the VBS state must be twofold degenerate,
achieving q ¼ 2 [31]. Specifically, we begin by taking
Jy1 ¼ 0:8Jx1. For these couplings, the model is Néel

ordered for N � 4 and VBS ordered for N > 4 (see the
Supplemental Material [30] for details). To study the
Néel-VBS transition for N � 4, we add a Q interaction
(here, we use Qy;y ¼ 0:8Qx;x) and tune the ratio Jx1=Q

x;x.
Remarkably, we find first-order transitions for N ¼ 2, 3
(see Fig. 2) and a continuous transition for N ¼ 4 (see the
Supplemental Material [30]). For N > 4, we can study the
Néel-VBS transition by introducing a J2 coupling. For all
N > 4, we find strong evidence for a continuous transition.
A sample of our data for N ¼ 7 is shown in Fig. 3 (addi-
tional data for N ¼ 5, 10 are shown in the Supplemental
Material [30]). Although we note that in principle our
finding of a first-order transition cannot rule out a continu-
ous transition in another model with the same q, N, it is
natural to assume that the first-order transition observed for
q ¼ 2 is generic and results from the relevance of �2 for
N ¼ 2, 3. This assumption lends itself naturally to an
interesting interpretation of our numerical observation
that for q ¼ 2, the transition is first order for N ¼ 2, 3
and continuous for N � 4: in general, we expect that for a
fixed q, the scaling dimension of the monopole operator

TABLE I. Table showing the inferred relevance (R) or irrele-
vance (I) of qmonopoles at the nc-CPN�1 fixed point, which our
current study has allowed us to complete. Numerical simulations
of the Néel-VBS transition in the models discussed here only
allow studies for N � 2. The entries with R correspond to an
unstable fixed point and I to a stable fixed point that can then
support the RG flow of Fig. 1(a). At some currently unknown
critical value of N > 10, the q ¼ 1 case switches from R to I.

N ¼ 1, 1=N I I I I � � � I nc-CPN�1

� � �
N ¼ 10 R I I I I nc-CP9

N ¼ 9 R I I I I nc-CP8

N ¼ 8 R I I I I nc-CP7

N ¼ 7 R I I I I nc-CP6

N ¼ 6 R I I I I nc-CP5

N ¼ 5 R I I I I nc-CP4

N ¼ 4 R I I I I nc-CP3

N ¼ 3 R R I I I nc-CP2

N ¼ 2 R R I I I nc-CP1

N ¼ 1 R R R I I XY
N ¼ 0 R R R R R Photon

q ¼ 1 q ¼ 2 q ¼ 3 q ¼ 4 � � � q ¼ 1
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should increase as N increases [32]. What we have
observed here then is that for q ¼ 2, the scaling dimension
is large enough to become irrelevant only when N � 4 [in
agreement with the RG flow in Fig. 1(a)], but for N ¼ 2, 3,
the operator is a relevant perturbation [in contradiction to

the RG flow shown in Fig. 1(a)] and thus drives the
transition first order.
Honeycomb lattice.—Next, we study the case of a q ¼

threefold degenerate valence-bond solid phase. We can
achieve this by studying our model [Eq. (1)] on the honey-
comb lattice [see Fig. 1(a)]. The cases of SU(2), SU(3), and
SU(4) have recently been studied [20,33], and the transi-
tion was shown to be continuous and is expected to remain
continuous for larger N [32]. Our goal is to verify this
expectation by studying the QCP for large N and extract
�N and �V at the critical point for N ¼ 5, 7, 10. Our
starting point now is a J1 only model on the nearest
neighbors of a honeycomb lattice, which is VBS ordered
for N ¼ 5, 7, 10 (see the Supplemental Material [30] for a
full study of the J1 model as a function of N). To tune into
the Néel state, we introduce a J2 between second nearest
neighbors on the honeycomb. We observe very good evi-
dence for a continuous transition; a sample of our data for
N ¼ 7 is shown in Fig. 4.
Discussion.—In addition to the results already presented

for SU(7), we have extracted �N and �V for q ¼ 2, 3 and
N ¼ 5, 10. Figure 5 shows all of our results in comparison
to previous data from the square-lattice study [18] and the
analytic predictions [32,34,35]. Our procedure for extract-
ing the critical exponents, as well as the values of the
critical couplings, is detailed in the Supplemental
Material [30]. We find that within the error bars of our
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FIG. 2 (color online). First-order transition for q ¼ 2 and
N ¼ 3 [rectangular lattice with SU(3) spins]. Magnetic suscep-
tibility for SU(3) on the rectangular lattice. The sharp jump is
indicative of a first-order transition. The inset shows a double-
peaked histogram of data taken from a point in the middle of the
transition (Jx1=Q

x;x ¼ 2:71) for L ¼ 48, thus providing further

evidence for a first-order transition. To accommodate the
rectangular-lattice symmetry [41], we take a lattice with Lx ¼
4Ly=3; L ¼ Ly in our legend.
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FIG. 3 (color online). Continuous transition for q ¼ 2 and N¼
7 [rectangular lattice with SU(7) spins]. (a) This panel shows the
Binder ratio data. (b) Both the magnetic (blue squares) and VBS
(green circles) susceptibility data. The data have been collapsed
such that YNðzÞ ¼ L1þ�N�NðzÞ þ ðaþ bzÞL�! and YV ðzÞ ¼
L1þ�V�V ðzÞ with �N ¼ 0:639, a ¼ 8:5, b ¼ 0:1, ! ¼ 0:5, and
�V ¼ 1:26. Also, z ¼ ½ðg� gcÞ=gc�L1=� with g ¼ J2=J

x
1 , gc ¼

0:7552, and � ¼ 0:69. For the magnetic susceptibility, the fol-
lowing system sizes were used in the collapse: L ¼ 42, 48, 54,
60, 66, 72, 78, 84, 90, 96, 102, 108. For the VBS susceptibility,
the following system sizes were used in the collapse: L ¼ 36, 42,
48, 54, 60, 66.
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FIG. 4 (color online). Continuous transition for q ¼ 3 and
N¼7 [honeycomb lattice with SU(7) spins]. (a) The Binder
ratio. (b) Both the magnetic (blue squares) and VBS (green
circles) susceptibility data. The data have been collapsed
such that YNðzÞ¼L1þ�N�NðzÞþðaþbzÞL�! and YVðzÞ ¼
L1þ�V�VðzÞ with �N ¼ 0:67, a ¼ 20:0, b ¼ 0:8, ! ¼ 1:0, and
�V ¼ 1:41. Also, z¼½ðg�gcÞ=gc�L1=� with g¼J2=J1, gc¼
0:5196, and �¼0:72. For the magnetic susceptibility, the follow-
ing system sizes were used in the collapse: L ¼ 36, 42, 48, 54,
60, 66, 72, 78, 84, 90, 96. For the VBS susceptibility, the
following system sizes were used in the collapse: L ¼ 18, 24,
30, 36, 42, 48, 54. There are 2L2 lattice sites.

PRL 111, 137202 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

27 SEPTEMBER 2013

137202-3



calculation, the anomalous dimensions of the Néel and
VBS order parameters are the same for rectangular, honey-
comb, and square lattices, which is strong evidence for the
fact that the phase transition in these three different cases is
controlled by the same fixed point. This must mean that the
lattice anisotropy is irrelevant for N ¼ 5, 7, 10, which in
the field theory language corresponds to the irrelevance of
two-, three-, and fourfold monopoles at these fixed points
[10]. In addition, we find that as N increases, the critical
indices approach the value computed in the 1=N expansion
in the nc-CPN�1 field theory, as shown in Fig. 5. This is
evidence that the common critical point is indeed the
nc-CPN�1 theory, as predicted by ‘‘deconfined criticality.’’

We now put our results in a broader context (see Table I
and, for a more detailed discussion, the Supplemental
Material [30]). Since the critical theory of the SU(N)
Néel to q-fold degenerate VBS transition is described by
the CPN�1 theory with q monopoles, we can think of our
numerical simulations of antiferromagnets as a way to
learn about the CPN�1 theory with q monopoles. The
nc-CPN�1 fixed point is known to exist analytically at
large N [36] and for N ¼ 1 [37] (for N ¼ 0, there are no
matter fields and one has a stable photon phase). We shall
take the point of view that by continuity, it exists for all N;
this is the rightmost column of Table I (we note here that
the case N ¼ 2 has been debated in the literature [21–24]).

We can now ask whether q monopoles are relevant (R) or
irrelevant (I) at the nc-CPN�1 fixed point. Past analytic and
field theoretic works have addressed the question for
N ¼ 0 [38], N ¼ 1 [37], and N ¼ 1 [32]. The column
q ¼ 1 has recently been addressed in simulations of loop
models [39] and bilayer SU(N) antiferromagnets [40]. The
column q ¼ 4 has been addressed by studying the critical
point of the square-lattice Néel-VBS transition [18]. Here,
we have provided the final piece of the puzzle by studying
the q ¼ 2 and q ¼ 3 cases (see Ref. [20] for a study of
q ¼ 3, N ¼ 2), where we have explicitly seen the change
from a first-order to a continuous transition as N is
increased for q ¼ 2. The rest of the table can be filled
out by making the reasonable assumption that once an
entry is I, it will stay I for increasing q or N. It is expected
that the q ¼ 1 column will switch from R to I at some large
finite value of N; this value has not been accessed in
numerical simulations currently.
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