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The phase diagram of the iron arsenides is dominated by a magnetic and a structural phase transition,

which need to be suppressed in order for superconductivity to appear. The proximity between the two

transition temperature lines indicates correlation between these two phases, whose nature remains

unsettled. Here, we find a scaling relation between nuclear magnetic resonance and shear modulus

data in the tetragonal phase of electron-doped BaðFe1�xCoxÞ2As2 compounds. Because the former probes

the strength of magnetic fluctuations while the latter is sensitive to orthorhombic fluctuations, our results

provide strong evidence for a magnetically driven structural transition.
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The fact that superconductivity in most iron arsenide
materials appears in close proximity to a magnetic phase
transition [1] led to the early proposal that magnetic fluc-
tuations play a fundamental role in promoting Cooper
pairing [2]. Indeed, the nuclear magnetic resonance
(NMR) spin-lattice relaxation rate 1=T1, which is propor-
tional to the strength of spin fluctuations, is substantially
enhanced in optimally doped compounds, where the super-
conducting transition temperature Tc acquires its highest
value, and rather small in strongly overdoped samples,
where Tc vanishes [3]. At the same time, a tetragonal-
to-orthorhombic phase transition is always found near the
magnetic transition, and, consequently, in the vicinity of the
superconducting dome [4,5]. Measurements of the shear
elastic modulusCs, which is the inverse susceptibility of the
orthorhombic distortion, also found a clear correlation
between the strength of lattice fluctuations and Tc [6–8].
Therefore, the road towards understanding the high-
temperature superconducting state in the iron pnictides
necessarily passes through the understanding of the rela-
tionship between the magnetic and structural transitions.

That these two phases are correlated is evident from the
phase diagram of the iron pnictides, since the structural
transition line (at temperature Ts) and the magnetic tran-
sition line (at temperature TN � Ts) follow each other
closely in the normal state as doping (or pressure) is
changed [9–11] (see Fig. 3). Although strong evidence
has been given for an electronic mechanism driving the
structural transition [5], the key unresolved issue is its
microscopic nature. Two competing approaches have
been proposed, where magnetic fluctuations play a funda-
mentally distinct role. One point of view is based on strong
interorbital interactions that lead to orbital order and
may induce magnetism as a secondary effect [12–16].
Alternatively, spin fluctuations are considered the driving
force behind the structural transition by inducing strong
nematic [17–20] or closely related orbital fluctuations

[21,22]. While it is clear that both degrees of freedom are
important to correctly describe the electronic orthorhombic
phase [23,24], it is crucial to establish which of the two is
the primary one, since both orbital [25,26] and spin fluc-
tuations [2] have been proposed as candidates for the
unconventional pairing state of the pnictides.
Differentiating between the two proposed scenarios is

difficult in the symmetry-broken state, because all possible
order parameters are nonzero at T < Ts: orthorhombicity,
orbital polarization, magnetic anisotropy, etc. [27–33].
Instead, additional information can be obtained by study-
ing the fluctuations associated with each degree of freedom
in the tetragonal phase at T > Ts [34]. In this regime, it
holds generally that the electronic driven softening of the
elastic shear modulus Cs is determined by the static sus-
ceptibility �nem � h’’i associated with the electronic
degree of freedom ’ that drives the structural transition:

Cs

Cs;0

¼
�
1þ �2

Cs;0

�nem

��1
: (1)

The tetragonal symmetry is broken once h’i � 0, which
gives rise to a finite orthorhombic distortion �xx � �yy /
h’i. In the orbital fluctuations model, ’ corresponds to the
difference between the occupations of the dxz and dyz
orbitals, and � is the coupling between the lattice and
orbital distortions [14]. On the other hand, in the spin-
nematic case, ’ is an Ising-type degree of freedom refer-
ring to the relative orientation of neighboring spin
polarizations and � is the magnetoelastic coupling [6].
Cs;0 is the bare shear modulus in the absence of these

electronic degrees of freedoms.
In this Letter, we show that the nematic susceptibility

�nem is closely related to the dynamic spin susceptibility,
strongly supporting a magnetically driven structural tran-
sition in the BaðFe1�xCoxÞ2As2 family of pnictides.
Specifically, we show that spin fluctuations, given by the
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NMR spin-lattice relaxation rate 1=T1, and orthorhombic
fluctuations, given by the shear modulus Cs, satisfy the
scaling relation:

Cs

Cs;0

¼ 1

1þ ½aðT1TÞ � b��1
(2)

with doping-dependent, but temperature-independent con-
stants a and b. The spin-lattice relaxation rate and the shear
modulus data considered here are the ones previously
presented in Refs. [3,8], respectively. The raw data con-
tains contributions from critical fluctuations—which is our
interest here—and noncritical processes, which are unre-
lated to the magnetic or structural transitions. To make a
meaningful scaling analysis, we need to disentangle these
two contributions. The NMR 1=T1T is given by

1

T1T
¼ �2

g lim
!!0

X
k

F2ðkÞ Im�ðk; !Þ
!

; (3)

where �ðk; !Þ denotes the dynamic magnetic susceptibil-
ity at momentum k and frequency !. Here, �g is the

constant gyromagnetic ratio and FðkÞ is the structure
factor of the hyperfine interaction, which depends on the
direction of the applied field. The critical magnetic fluctu-
ations are associated with the ordering vectorsQ1 ¼ ð�; 0Þ
orQ2 ¼ ð0; �Þ of the magnetic striped state, and lead to the
divergence of 1=T1T as the temperature is lowered towards
the magnetic transition. By choosing the applied magnetic
field parallel to the FeAs plane, the structure factor FðkÞ is
enhanced at the ordering vector Q, favoring the dominant
contribution of the critical fluctuations [35]. To remove the
noncritical Korringa contribution coming from small mo-
menta k � 0, we follow Ref. [3] and subtract from 1=T1T
the data of a heavily overdoped composition (x ¼ 0:14)
which is sufficiently far from magnetic and structural
instabilities. This is justified in this family of compounds
due to the nearly doping-independent shape of the Knight
shift, which may be different in other series [36–38]. We
note, however, that our scaling analysis is robust and holds
even for other choices of background subtraction.

Similarly, strongly overdoped samples display a rather
different temperature dependence for the shear modulus
than underdoped and optimally doped samples. While in
the latter a critical softening of the shear modulus is
observed as the temperature decreases, in the former Cs

hardens slightly at low temperatures because of phonon
anharmonicity. Thus, to obtain the critical contribution to
the shear modulus, we used the data of a heavily overdoped
sample (x ¼ 0:33) as background, as explained in [8].

Figure 1 presents both the shear modulus data of Ref. [8]
(continuous curve) and the rescaled spin-lattice relaxation
rate (3) of Ref. [3] (closed symbols) for the undoped
(x ¼ 0) composition. The agreement is excellent for
the entire temperature range, providing strong support
for the existence of a true scaling between spin and
lattice fluctuations. Interestingly, recent Raman scattering

measurements in the tetragonal phase of the same com-
pound found that the orbital fluctuations are not strong
enough to account for the experimentally observed soften-
ing of the shear modulus [34]. For completeness, we also
display in Fig. 1 the shear modulus data of Ref. [7] (open
symbols), to show the agreement between the ultrasound
technique of the latter work and the three-point bending
method of Ref. [8]. We note that the differences in the two
sets of data arise mostly from disparities in the transition
temperatures associated with sample preparation.
To show that this agreement is not fortuitous, we also

analyzed doped samples, see Fig. 2. In this case, the
comparison is complicated by the fact that the two groups
in Refs. [3,8] did not use the same samples and the deter-
mination of the Co content may differ. For this reason, we
determine an ‘‘effective’’ Co content by comparing the
available transition temperatures (Ts, TN , Tc) of the two
sets of samples with a third independent phase diagram
(from Ref. [39]). The values are indicated in Fig. 2 and
differ only slightly from those given in the respective
references.
Our analysis of the rescaled T1T data presented in

Fig. 2 remarkably captures the doping evolution of the
temperature-dependent shear modulus. The doping depen-
dence of the scaling parameters a and b is shown in Fig. 3.
While a is roughly constant across the entire phase dia-
gram, b is significantly suppressed, approaching zero near
optimal doping. Note from Eq. (2) that b is not a Curie-
Weiss temperature, but a parameter that measures the
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FIG. 1 (color online). Scaling between the shear modulus Cs

(open symbols, from Ref. [7], continuous line from Ref. [8]) and
the NMR spin-lattice relaxation rate 1=T1 (closed symbols, from
Ref. [3]) in the tetragonal phase of the parent compound
BaFe2As2. Cs;0 denotes the noncritical, high-temperature shear

modulus. The fitting parameters are a ¼ 0:65 ðsKÞ�1 and b ¼
1:3 in Eq. (2). The inset schematically represents the magne-
toelastic coupling, which makes bonds connecting antiparallel
(parallel) spins expand (shrink).
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separation between the magnetic and structural instabil-
ities. Thus, its vanishing suggests that the two instabilities
tend to the same temperature. We will come back to this
point below.

Having established experimentally the existence of the
scaling relation (2), we now discuss its origin using a
general magnetoelastic model [6,20,40–42]. Since we
removed the noncritical contributions to 1=T1T and Cs, a
low-energy model suffices. In particular, we consider two
magnetic order parameters M1 and M2, referring to the
magnetic striped states with ordering vectors Q1 ¼ ð�; 0Þ
(i.e., spins parallel along ŷ and antiparallel along x̂) and
Q2 ¼ ð0; �Þ (i.e., spins parallel along x̂ and antiparallel
along ŷ) [19]. We also include the orthorhombic order
parameter � ¼ �xx � �yy, where �ij � ð1=2Þð@iuj þ @juiÞ
is the strain tensor. For simplicity, we consider here the
coordinate system referring to the 1-Fe unit cell. The action
of the collective magnetic degrees of freedom is given by

Smag ¼
X
q;i

��1ðqÞMi;q �Mi;�q þ u

2

X
r

ðM2
1 þM2

2Þ2

� g0
2

X
r

ðM2
1 �M2

2Þ2; (4)

where u, g0 > 0 are constants and we introduced the
notations q ¼ ðq; ! ! i!n � i0þÞ and r ¼ ðr; �Þ, with �
denoting imaginary time and !n ¼ 2n�T, Matsubara
frequency. At the mean-field level, minimization of this
free energy leads to the two magnetic stripe configurations
when ��1ðQÞ ! 0, i.e., we obtain either M1 ¼ 0, M2 � 0

or M1 � 0, M2 ¼ 0. This free energy can in fact be
microscopically derived from models of either itinerant
electrons [19,43,44] or localized spins [17,45].
The lattice contribution to the action is given by

Sel ¼
X
r

�
1

2
Cs;0�

2 � ��ðM2
1 �M2

2Þ
�
: (5)

The first term is just the harmonic part of the elastic
energy, while the second one is the magnetoelastic
coupling, with arbitrary coupling constant � > 0. This
coupling makes bonds connecting antiparallel (parallel)
spins expand (shrink) in the orthorhombic phase (see inset
of Fig. 1). In principle, one could assume that Cs;0 itself

becomes zero at a certain temperature. Here, instead, we
assume Cs;0 to be constant and to never become soft on its

own. Then we can integrate out the Gaussian orthorhombic
fluctuations and derive the shear modulus Cs renormalized
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FIG. 2 (color online). Comparison between the relative shear
modulus Cs=Cs;0 (continuous lines, from Ref. [8]) and the

rescaled NMR 1=T1T (closed symbols, from Ref. [3]) for differ-
ent ‘‘effective’’ Co concentrations in BaðFe1�xCoxÞ2As2. The
‘‘effective’’ Co concentration was determined by comparing the
available transition temperatures (Ts, TN , Tc) of the two sets of
samples with a third independent phase diagram (from
Ref. [39]).
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FIG. 3 (color online). Doping dependence of the fitting pa-
rameters a and b, and the phase diagram of BaðFe1�xCoxÞ2As2.
Notice that a remains nearly constant, whereas b approaches
zero near optimal doping, where the superconducting transition
temperature is the highest. The transition temperatures in the
phase diagram were obtained from resistivity measurements of
Ref. [39]. The bare transition temperatures TT1T and TCs

are

obtained from Curie-Weiss fittings of the data from Refs. [3,8],
respectively. Lines are a guides to the eye.
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by spin fluctuations, obtaining �nem of Eq. (1) as ��1
nem ¼

��1
0;nem � g. The bare nematic susceptibility is determined

by the dynamic spin susceptibility �ðqÞ properly renormal-
ized by magnetic fluctuations, �0;nem ¼ P

q�
2ðqÞ. The

nematic coupling g is the bare coupling g0 of Eq. (4)
renormalized by all other nonsoft modes, such as elastic
fluctuations and the ferro-orbital susceptibility �orb, which
leads to an enhancement g ! gþ �2

orb�orb [23].

To make contact with the spin-lattice relaxation rate (3),
we note that the magnetic susceptibility has overdamped
dynamics near the ordering vectors Q, i.e., ��1ðq; !Þ ¼
��1ðqÞ � i!�, with Landau damping �. Substituting in
Eq. (3), we obtain 1=T1T ¼ �2

g�F
2ðQÞPq�

2ðqÞ, where we
replaced FðqÞ ! FðQÞ because of the direction of the
applied field. Now, going back to the spin-nematic expres-
sion for �0;nem, we note that if the system is in the vicinity

of a finite-temperature critical point—which is certainly
the case for underdoped samples—we can replace the sum
over the momentum and Matsubara frequency by a sum
over the momentum only, i.e.,

P
q�

2ðqÞ ! T0

P
q�

2ðqÞ,
where T0 is the temperature scale associated with the
magnetic transition. Then, using the expression for
1=T1T, we obtain the scaling (2) with

a ¼ �2
g�F

2ðQÞCs;0

T0�
2

; b ¼ gCs;0

�2
: (6)

Since we assumed that magnetic fluctuations are the
only soft mode, this result confirms that the scaling (2) is
a signature of a magnetically driven structural transition, as
we argued qualitatively above. Note that a distinct possible
relation between spin fluctuations and elastic softening,
Cs ¼ a� b=T1T, was mentioned in Ref. [46]. Our scaling
relation in Eq. (2), however, not only connects both quan-
tities in a quantitatively more accurate way but it also has a
very clear physical interpretation, as shown above.

Equation (6) allows us to understand the doping evolu-
tion of the parameter b in Fig. 3 from a more physical
perspective. As doping increases, we notice that this
parameter changes from b > 1 in the undoped compound
to b ! 0 near optimal doping. We interpret this decrease of
b as an indication that the system crosses over from a
regime where the nematic coupling is dominated by the
magnetic contribution, g > �2=Cs;0, to a regime governed

by the magnetoelastic coupling, g < �2=Cs;0. Since the

bare high-temperature shear modulus barely changes
with doping (see Ref. [7]), either the magnetoelastic cou-
pling � increases or the bare coupling g0 decreases towards
optimal doping. Interestingly, calculations of g0 based on
itinerant electrons found a suppression of this quantity as
charge carriers are introduced [19].

The tendency of a vanishing b near optimal doping
suggests that the magnetic and elastic instabilities converge
to the same point [47]. Indeed, by fitting the T1T and
Cs data with Curie-Weiss expressions ðT � TT1TÞ and

ðT � TCs
Þ=ðT � �Cs

Þ, respectively, we also find that the

estimated bare transition temperatures TT1T and TCs
tend

to converge at optimal doping (see Fig. 3). The negative
value of b in the slightly overdoped sample can have differ-
ent origins. One possible reason is the inadequacy of the
above derivation for the scaling relation near a quantum
critical point, where the Matsubara frequency becomes a
continuous variable and

P
q�

2ðqÞ � T0

P
q�

2ðqÞ. A more

interesting possibility is that g itself becomes negative in
Eq. (6). This would indicate that the magnetic instability
is not towards a striped magnetic state, but an spin
density-wave phase that preserves the tetragonal symmetry
of the system [48]. Interestingly, such a state has been
recently found experimentally in optimally hole-doped
Ba1�xNaxFe2As2 [49] and in BaðFe1�xMnxÞ2As2 [50].
In summary, our analysis reveals a robust scaling rela-

tion between the shear modulus and the NMR spin-lattice
relaxation rate in BaðFe1�xCoxÞ2As2. This result unveils
the fact that the ubiquitous elastic softening in these iron
pnictides is a consequence of the magnetic fluctuations
associated with the degenerate (i.e., frustrated) ground
states with ordering vectors Q1 ¼ ð�; 0Þ and Q2 ¼
ð0; �Þ. Due to the similarity between the phase diagrams
of BaðFe1�xCoxÞ2As2 and of other iron pnictide families,
we expect this scaling relationship to hold in other com-
pounds as well.
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