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We investigate the effect of interactions on shot noise in � ¼ 2 quantum Hall edges, where a repulsive

coupling between copropagating edge modes is expected to give rise to charge fractionalization. Using the

method of nonequilibrium bosonization, we find that even asymptotically the edge distribution function

depends in a sensitive way on the interaction strength between the edge modes. We compute shot noise

and the Fano factor from the asymptotic distribution function, and from comparison with a reference

model of fractionalized excitations, we find that the Fano factor can be close to the value of the

fractionalized charge.
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In contrast to three spatial dimensions, where excitations
of an interacting many particle system often carry the same
quantum numbers as in the noninteracting case, interac-
tions in 1D systems completely change the character of
the excitation spectrum [1,2]. A prototype model for this
physics is the Luttinger model, where electrons are no
longer well defined quasiparticles and where electronic
excitations decompose into spin and charge parts moving
with different velocities [1,3].

An important example of interacting 1D systems is the
edge states of incompressible quantum Hall liquids [4,5],
where as a result of strong interactions, charge fractional-
ization can occur [6–12] and manifests itself in shot noise
[13–16]. For the case of the filling fraction � ¼ 2, there are
two chiral edge modes copropagating at different velocities
v1 and v2. In the presence of a short range interaction v12

between them, a pulse of charge e injected into edge mode
one at a first quantum point contact (QPC1) decomposes
into a charge pulse and a neutral pulse. In the charge pulse,
a charge e� ¼ ðe=2Þ sin2� [where tan2� ¼ v12=ðv1 � v2Þ
parametrizes the strength of interactions] travels on mode

two and e=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2=4� ðe�Þ2p

on mode one [17]. In the
neutral pulse, there is a charge �e� on mode two and a

charge e=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2=4� ðe�Þ2p

on mode one. In this way, by
exciting edge channel one via a partially transmitting
QPC1, high frequency charge noise is generated on edge
mode two [7]. At a QPC2, allowing for partial transmission
of channel two, both charges �e� traveling within the
charge (neutral) pulse give rise to low frequency shot noise
with a Fano factor e�=e [17].

Alternatively, one can look at this problem by using the
concept of energy relaxation [18–21]. Interactions play a
crucial role in the thermalization process that drives a
system through states described by the Gibbs equilibrium
ensemble. Generically, the dynamics is only constrained
by two integrals of motion, total energy and total particle
number. Integrable models like the � ¼ 2 quantum Hall
edge have infinitely many integrals of motion, and

therefore it is not clear if an equilibrium state can ever be
reached [22]. If the two edge modes are driven out of
equilibrium with respect to one another, the system relaxes
towards a nonthermal steady state [18–21,23], whose dis-
tribution function determines shot noise at a QPC2. The
corresponding Fano factor depends on the strength of the
interaction between the edge modes, and in general neither
agrees with the fractional charge e� introduced above nor
with the result for two equilibrated edge modes. For the
special case of a half open QPC1, however, the Fano factor
is close to e�=e, suggesting an interpretation in terms of
charge fractionalization. Some of our results were obtained
independently in Refs. [8,24]. In Ref. [8], a setup similar to
that in Fig. 1 was analyzed perturbatively in the trans-
mission probability a of QPC1, capturing only the initial
stage of relaxation. A nonperturbative analysis is presented
in Ref. [24], and the nonanalytic dependence of noise on a
in the limit a � 1 is emphasized. If the integrability of the
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FIG. 1 (color online). Sketch of a � ¼ 2 Hall bar with a QPC1,
where inner modes (2, light blue lines) are fully reflected, while
partial transmission of outer modes (1, black lines) is possible.
At a QPC2, the opposite situation is realized. The shaded area is
the interaction region, where partial energy relaxation takes
place. The upper edge is biased with voltage V at contact one;
current noise is measured at contact three.
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� ¼ 2 edge is broken, the system eventually relaxes to a
thermal state [25].

We consider the setup (Fig. 1) where a Hall bar is
pinched by two QPCs. The outer edge mode is labeled 1
and the inner one 2. The top and bottom edges originate at
zero temperature from reservoirs at voltages V1 ¼ V and
V2 ¼ 0. At the QPC1, the outer modes are partially trans-
mitted with probability a, while the inner ones are fully
reflected; as a consequence, only the outer mode becomes
noisy. After the QPC1, the two edge modes interact over
some distance (shaded area in Fig. 1) before reaching the
QPC2. Here, the outer modes are fully transmitted while
the inner ones are partially reflected with probability p.
Current noise is then measured at contact three. Using the
recently developed nonequilibrium bosonization technique
[26–29] within a quantum-quench model [30–32], we
compute the shot noise at the QPC2, with particular
emphasis on its dependence on the strength of the interac-
tion between the edge modes.

The edges and the QPC2 are described by the following
Hamiltonian (@ ¼ kB ¼ 1):

H �¼2�
Z
x
½v1�

2
1�ðxÞþv2�

2
2�ðxÞþv12�1�ðxÞ�2�ðxÞ�;

H QPC2¼ t2c
y
2uðxÞc 2dðxÞþH:c: (1)

Here, H � describes chiral modes and � ¼ u, d labels the

upper and lower edges. The local interaction needs to
satisfy the stability criterion v2

12=4 � v1v2 [33]. H QPC2

describes tunneling of electrons at the QPC2, with t2 the
tunneling amplitude. The fields �i�ðxÞ in Eq. (1) describe

density fluctuations and are related to bosonic displace-
ment fields by �i�ðxÞ ¼ @x�i�ðxÞ=2�; here, i labels

different edge modes. The bosonic fields satisfy
½�i�ðxÞ; �j�ðyÞ� ¼ {��i�;j�sgnðx� yÞ, and the fermionic

field is represented as c i�ðxÞ ¼ ð2�	Þ�1=2e{�i�ðxÞ, with 	

denoting a short distance cutoff on the scale of the
magnetic length. For later reference, we decompose the

bosonic fields as �i�ðxÞ ¼ ’i�ðxÞ þ ’y
i�ðxÞ and ’i�ðxÞ ¼P

q>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=qL

p
e�q	=2e{s�qxbi�ðs�qÞ, where s� ¼ �1,

respectively, for right (u) and left (d) movers, and by and
b are canonical bosonic operators.

Following Ref. [20], we do not model the QPC1 explic-
itly but instead consider its effect on the downstream
electron distribution of mode (1u) in a noninteracting
setting and model the distribution as a ‘‘double step’’
function

fð
Þ ¼ a�ð�
þ�1Þ þ ð1� aÞ�ð�
þ�2Þ; (2)

where �1 ¼ ð1� aÞeV and �2 ¼ �aeV (eV > 0) are
chosen such that the average density in mode (1u) corre-
sponds to zero bias. As a consequence of this choice, there
is no density shift in mode (2u).

Next, we consider the effects of the intermode interac-
tion on the distribution function (2). Instead of switching

on the interaction right after the QPC1, we use the model of
a quantum quench, where the interaction v12 is suddenly
turned on for times t > 0 everywhere in space. Because of
the chirality of the edge states, the quantum quench faith-
fully models the effect of a position dependent interaction;
see Refs. [17,20]. The interacting Hamiltonian can be
diagonalized by means of a Bogoliubov transformation
M. For copropagating states (v1v2 > 0), M can be repre-
sented by the following matrix:

M ¼ cos� sin�

� sin� cos�

 !
; (3)

allowing us to express H in terms of new fields �i;q ¼P
jMijbj;q. The mixing angle � expresses the strength of

the interaction through the relation tan2�¼v12=ðv1�v2Þ.
At this point, the new operators evolve in the Heisenberg
picture as �iqðt0Þ ¼ e�{q~vit0�iqðt ¼ 0Þ, with new velocities

~v1ð2Þ ¼ v1ð2Þcos2�þ v2ð1Þsin2�� ð1=2Þv12 sin2�.
As a final step, we undo the Bogoliubov transformation

in order to express the �iqðt0Þ in terms of the original basis.

As a result, we obtain a relation between the bosonic
operators at t0 > 0 and those at t ¼ 0:

b1qðt0Þ ¼ uqðt0Þb1q þ sqðt0Þb2q;
b2qðt0Þ ¼ sqðt0Þb1q þ vqðt0Þb2q;

(4)

where biq � biqðt ¼ 0Þ. Now, all the time dependence is

encoded in the coefficients

uqðt0Þ ¼ cos2�e�{q~v1t0 þ sin2�e�{q~v2t0 ;

vqðt0Þ ¼ cos2�e�{q~v2t0 þ sin2�e�{q~v1t0 ;

sqðt0Þ ¼ ð1=2Þ
�ðe�{q~v1t0 � e�{q~v2t0Þ;
(5)

where 
� ¼ sin2�. To leading order in the tunneling
amplitude t2, the current noise at the QPC2 can be
expressed in terms of greater (lesser) Green functions

G>ð<Þ
i;� ð
Þ [34] as

S!!0 ¼ 2e2

h

jt2j2
2�

Z


G<

2uð
ÞG>
2dð
Þ þG<

2dð
ÞG>
2uð
Þ; (6)

with G<ð
Þ ¼ G>ð�
Þ. Using the boson representation of

electron operators, we can compute G>ð<Þ
2u ð�Þ of the fully

interacting edge mode. Because of the nonequilibrium
distribution of edge mode (1u), calculating the expecta-
tion value of a product of bosonic exponents is highly
nontrivial. Here, we discuss the results for the ‘‘long time
limit’’ of the Green function, in which the system reaches
a nonequilibrium steady state:

G<
2uð�Þ ¼ hc y

2uðt0 þ �; x0Þc 2uðt0; x0Þi
¼ G<

0 ð�Þhe�q�
?
1u
ðq;t0;�Þby1u;qe��q�1uðq;t0;�Þb1u;qi;

G<
0 ð�Þ ¼

1

2�

1

ð�{~v1�þ 	Þsin2�
1

ð�{~v2�þ 	Þcos2� : (7)
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Here, G<
0 ð�Þ is the equilibrium Green function of edge

mode 2 in the presence of interactions. All the informa-
tion about nonequilibrium effects is contained in the
average over bosonic coherent states in Eq. (7), where

�1uðq; t0; �Þ ¼ {ð2�=qLÞ1=2e{qx0�q	=2½sqðt0 þ �Þ � sqðt0Þ�.
As emphasized in Ref. [26], nonequilibrium effects make
the theory non-Gaussian, and higher order cumulants
appear in the evaluation of the above expectation value.
In order to compute the expectation value over the non-
equilibrium state, we refermionize the bosonic operators,
introducing new fermionic operators [2]:

by1u;q ¼ {ð2�=qLÞ1=2X
k

cy1u;kþqc1u;k;

b1u;q ¼ �{ð2�=qLÞ1=2X
k

cy1u;k�qc1u;k:

(8)

Since the bosonic operators describe free particle-hole
excitations, the c operators are also free and therefore can
be connected to the incoming states via a scattering matrix.
Then, the expectation values of products of Fermi opera-
tors can be evaluated using an appropriate fermionic den-
sity matrix �1u. The crucial step now consists in noticing
that the computation of higher order cumulants is similar to
the problem of full counting statistics, and using Klich’s
trace formula [27,35], it can be expressed in terms of a
Fredholm determinant of the Toeplitz type, normalized to
its zero temperature, equilibrium value

���ð�Þ ¼ det½1þ ðe�{�� � 1Þfð
Þ�
det½1þ ðe�{�� � 1Þ�ð�
Þ� ; (9)

where fð
Þ is given by Eq. (2). The scattering phase

��¼�Pqð2�=qLÞ1=2½�ðq;t0;�Þþ��ðq;t0;�Þ�¼2�ðe�=eÞ
!�ðt0;x0Þ contains information about the interedge inter-
action, and the window function

!�ðt0; x0Þ ¼ �½x0 � ~v1ðt0 þ �Þ� � �½x0 � ~v1t0�
þ �½x0 � ~v2t0� � �½x0 � ~v2ðt0 þ �Þ�: (10)

As a function of t0, !�ðt0; x0Þ represents two unit square
pulses of opposite signs, with widths �, and with a separation
equal to x0ð~v�1

1 � ~v�1
2 Þ. Since �� ¼ 2�ðe�=eÞ!�ðt0; x0Þ,

these pulses can be identified with charges �e� passing
an observer at position x0. In the case of two separated pulses,
the expectation value of bosonic coherent states factorizes
into a product of two single pulse determinants having the
same scattering phase ��;single ¼ 2�ðe�=eÞ½�ð�t0Þ �
�ð�t0 � �Þ�, and we can rewrite Eq. (7) as G<

2uð�Þ ¼
G<

0 ð�Þ ��2
�ð�singleÞ. The determinant Eq. (9) can be evaluated

numerically by treating t0 and 
 as conjugated variables and
by carefully defining a regularization scheme [27]. Finally,

the lesser Green function G<
2dð
Þ ¼ �ð�
Þ=~vsin2�

1 ~vcos2�
2 is

easily evaluated due to its equilibrium nature. Fourier trans-
forming Eq. (7) into energy space, we can compute the
distribution function at the QPC2; as a consequence of

interactions, the distribution function is broadened from
a single step (see Fig. 2). However, it does not have the
same functional form as a Fermi distribution but rather
describes a nonequilibrium steady state. The distribution
obtained by only retaining the Gaussian term in the cumulant
expansion clearly deviates from the full one, making
evident the necessity for including higher order terms.
The nonequilibrium distribution also deviates from an equi-

librium Fermi distribution with effective temperature T� ¼
eV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=2Það1� aÞp
=�, obtained by assuming that the two

edge modes fully equilibrate and that each of them carries
half the energy flux injected into the upper edge via the
QPC1. Using Eq. (6), we can finally evaluate the low
frequency noise; in doing so, we relate the reflection

probability p to the microscopic Hamiltonian through p ¼
jt2j2=2�~vsin2�

1 ~vcos2�
2 . In Fig. 3, we display the dependence of

low frequency noise on the transmission a of the QPC1,
normalizing the noise by its value at a ¼ 1=2. One clearly
sees that it deviates both from the standard free fermion
dependence að1� aÞ and from the effective equilibrium

result with Seq ¼ 4epI log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=2Það1� aÞp

=�. To put the

strength of the noise at theQPC2 into perspective, we define a
reference noise expected for noninteracting electrons tunnel-
ing through both the QPC1 and QPC2 along a single edge,
obtained by using the distribution Eq. (2) in Eq. (6):

Srefð! ! 0Þ ¼ 4epIað1� aÞ with I ¼ e2

h
V: (11)

Since the distribution Eq. (2) gives rise to both a particle and a
hole current, the prefactor inEq. (11) is 4 instead of the usual 2
(see the inset of Fig. 4). Defining a Fano factor F ¼ S=Sref ,
we can make contact with the concept of fractional charges
described in the introduction. Assuming that for fractional

FIG. 2 (color online). Steady state distribution of an edge
mode (2u) asymptotically away from the QPC1. The solid black
line represents the nonequilibrium distribution obtained from
Eqs. (7) and (9) by considering all cumulants. The dash-dotted
green line represents the distribution obtained by retaining
only the Gaussian term. The dashed red line represents the

fully equilibrated distribution at effective temperature T� ¼
eV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=2Það1� aÞp
=�. The mixing angle is � ¼ 0:47, and the

transmission probability of the QPC1 is a ¼ 1=2.
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charges the tunneling probability p in Eq. (11) is renormal-
ized to ðe�=eÞp [17], the Fano factor is given by F ¼
sin2�=2. In Fig. 5, the Fano factor is shown as a function of
the mixing angle for the specific transmission a ¼ 1=2 of the
QPC1. For this value of a, there is a surprisingly good
agreement between the value e�=e ¼ ð1=2Þ sin2� and F of
the full nonequilibrium noise, suggesting that the Fano factor
can indeed be interpreted as being due to the formation of
fractionalized charges in the � ¼ 2 quantum Hall edge.

We find that the zero frequency noise power depends in a
singular way on a in the limit a � 1; see also Ref. [24]. To
obtain the noise in this limit, the functional determinant
can be approximated by its long time asymptotics (valid for

eV� � 1) ���ð�Þ ’ exp½�j�j=ð2��Þ�, where the dephasing
rate ��1

� ¼ �ðeV=2�Þ log½1� 4að1� aÞsin2ð�
�=2Þ�.
Knowledge of ���ð�Þ for large times allows us to accurately
calculate the distribution function of mode (2u) for

energies 
 � eV. However, for a � 1, the distribution
function only deviates from a step function on the scale
aeV, such that the long time asymptotics allows an
exact calculation of the distribution function. Using
Eq. (6) and taking the a � 1 limit, we find Sð! ! 0Þ ’
8pa logð1=aÞsin2ð�
�=2ÞeVðe2=h�2Þ. This nonanalyticity
in a explains the divergence in S with x0 found in Ref. [8]
when calculating S perturbatively in a.
A useful way to characterize the nonlinear dependence

of experimentally measured shot noise on the transmission
probability a of the QPC1 is by fitting it to a function
proportional to ½að1� aÞ�d [36]. For the reference noise of
Eq. (11), d is trivially equal to unity. For ‘‘thermal’’ noise
with effective temperature T�, one finds d ¼ 0:5. For the
full nonequilibrium noise, we find that its dependence on a
can be well fitted by the above power law and that d varies
from d ¼ 0:85 for � ¼ �=16 to d ¼ 0:68 for � ¼ �=4; see
Fig. 5. In this way, from knowledge of d, the mixing angle
� can be inferred, without using the Fano factor.
In summary, due to the joint effect of interactions and

nonequilibrium, the distribution function of an originally
unbiased, zero temperature mode (2u) interacting with a
noisy mode (1u) evolves towards a nonthermal steady state
that depends on the interaction strength in an characteristic
way. Comparing the shot noise and Fano factor from our
numerically exact calculation with a simple model of
charge fractionalization, we find that the Fano factor can

FIG. 3 (color online). Shot noise after the QPC2 as a function
of a, normalized to its a ¼ 1=2 value, for a mixing angle � ¼
0:47. The solid black line represents the full nonequilibrium
result. The dashed blue line represents the reference noise of
noninteracting electrons. The dash-dotted red line represents
noise in a fully equilibrated thermal state.

a

FIG. 4 (color online). Fano factor F ¼ S=Sref as a function
of transparency of the QPC1 for a mixing angle � ¼ 0:47. At
a ¼ 1=2, the Fano factor is F ¼ 0:45. Inset: Double step distri-
bution [Eq. (2)]. The upper red area describes a hole current
Ih and the lower blue area a particle current Ip ¼ Ih ¼
ðe2=hÞVað1� aÞ, impinging on the QPC2. From this, we obtain
a reference noise Sref ¼ 2epðIh þ IpÞ; see also Eq. (11).

FIG. 5 (color online). Upper panel: Fano factor as a function of
the mixing angle for transmission a ¼ 1=2 of the QPC1. The
dashed red line represents the fully equilibrated edge; F is
independent of interactions. The black dots represent the full
nonequilibrium situation. The solid blue line represents the
reference model of a diluted system of fractional charges [F ¼
ð1=2Þ sin2�]. Lower panel: The dependence of the full nonequi-
librium noise is calculated numerically and fitted by a function
proportional to ½að1� aÞ�d for different values of �. The black
lines connecting the dots are a guide to the eye.
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indeed be interpreted in terms of charge fractionalization in
the � ¼ 2 quantum Hall edge.
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