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Spin-orbit interaction provides a spin filtering effect in carbon nanotube based Cooper pair splitters that

allows us to determine spin correlators directly from current measurements. The spin filtering axes are

tunable by a global external magnetic field. By a bending of the nanotube, the filtering axes on both sides

of the Cooper pair splitter become sufficiently different that a test of entanglement of the injected Cooper

pairs through a Bell-like inequality can be implemented. This implementation does not require noise

measurements, supports imperfect splitting efficiency and disorder, and does not demand a full knowledge

of the spin-orbit strength. Using a microscopic calculation we demonstrate that entanglement detection

by violation of the Bell-like inequality is within the reach of current experimental setups.

DOI: 10.1103/PhysRevLett.111.136806 PACS numbers: 73.63.Fg, 03.65.Ud, 74.45.+c, 75.70.Tj

The controlled generation and detection of entanglement
is a necessary step toward the goal of using quantum states
for applications. In a solid state nanostructure this control
ideally allows us to manipulate and detect entanglement
between selected pairs of electrons. A promising source of
entangled electron pairs is the Cooper pair splitter (CPS).
It consists of a superconductor that injects Cooper pairs
through two quantum dots (QDs) into two outgoing normal
leads, designed such that the Cooper pair electrons pref-
erably split and leave the superconductor over different
leads but preserve their spin entanglement [1,2]. Very
recently several CPS experiments have been performed
[3–7] and Cooper pair splitting efficiencies up to 90%
have been reached [7]. So far, however, a proof that the
electrons remain entangled is still lacking.

The present experiments do not allow us to resolve
individual splitting events, and the results of the measure-
ments are time averaged quantities, such as current or
noise. These provide information on the average spin
correlations of the injected Cooper pairs. In this Letter
we demonstrate that this information can be extracted
from the currents alone in a carbon nanotube (CNT) based
CPS, if spin-orbit interaction (SOI) effects are taken into
account [8]. This allows us to propose a general entangle-
ment test, based on the Bell inequality [9,10], which does
not require noise measurements [11].

Indeed, the SOI in CNTs leads to unique spin-energy
filtering properties that directly modulate the Cooper pair
splitting current flowing out of the CPS, and ideally sup-
press any noise. From conductance measurements it is then
already possible to reconstruct all spin correlators con-
tained in the Bell inequality, thus avoiding the need of
ferromagnetic contacts as spin filters, which are challeng-
ing to implement. Without noise measurements we also
avoid the associated problem of electron fluctuations in the

detectors [12]. The built-in energy filtering furthermore
leads to an enhanced Cooper pair splitting efficiency [13].
The proposed CPS setup is shown in Fig. 1 and consists

of a regular double-QD CPS built from a single-wall CNT,
yet made with a (naturally) bent CNT such that there is an
angle �CNT between the QD axes. Alternatively, the QDs
can be built from separate CNTs with similar diameters
and an angle �CNT between them. The SOI spin splits the
QD levels. In combination with a global magnetic field B,
the fourfold spin-valley degeneracy of the QD levels is
completely lifted. The split levels provide a unique spin
filter for electron transport with two spin projection axes
per QD, filtering directly the injected Cooper pair current.

FIG. 1 (color online). Double quantum dot CPS based on a
bent CNT in an external magnetic field B. Because of B, SOI,
and the bending angle �CNT of the CNT, the spin-valley degen-
eracy of the QD levels is lifted, and the resulting 4 levels (boxes)
are spin polarized as indicated by the arrows (see also Fig. 2).
The superconductor SC injects Cooper pairs (hourglass shape)
that split onto the QDs and provide a current to the normal leads
N that is modulated by the spin projections of the QDs (tunable
by the gates VL;R) and can be used to determine the spin

correlators for the Bell inequality.
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Therefore, conductance measurements alone, at fixed B,
allow a reconstruction of all the spin correlators necessary
for the Bell inequality. The spin projection axes are differ-
ent in the two QDs due to the bending, and are tunable by
B. In the following we show that this tunability provides
sufficient conditions for obtaining violations of the Bell
inequality in an ideal CPS. We then proceed to a full
microscopic calculation and demonstrate that the result
remains robust under realistic conditions, as achievable
by present experiments.

SOI in CNT quantum dots.—CNTs are graphene sheets
rolled into a cylinder. They preserve the graphene band
structure with two Dirac valleys but have enhanced SOI
contributions due to the curvature. The corresponding
model, including the effect of B, is described by the sum
of the Hamiltonians [14–17]

H0 ¼ @vF½k0t �1 þ k�3�2�; (1)

Hcv ¼ @vF½�kcvt �1 þ�kcvz �3�2�; (2)

HSOI ¼ ��1Sz þ ��3Sz; (3)

HB ¼ �BgB � S=2þ jejvFRBz�1=2; (4)

which are matrices in the space spanned by the graphene
sublattice indices� ¼ A, B (with Pauli matrices�1;2;3), the

valleys � ¼ K, K0 ¼ þ, � (Pauli matrices �1;2;3), and the

spin projections S ¼" , # (Pauli matrices Sx;y;z, with Sz
oriented along the CNT axis). vF is the Fermi velocity,
k0t the transverse quantized momentum (zero for metallic
CNTs), k the longitudinal momentum, �kcvt;z are momen-

tum corrections induced by the curvature, �, � determine
the SOI, �B is the Bohr magneton, g ¼ 2 the Landé g
factor, e the electron charge, R the CNT radius, and Bz the
component ofB along Sz. We have neglected terms leading
to the formation of Landau levels since at the considered
sub-Tesla fields they are of no consequence. For a QD, k is
further quantized by the QD length [18–20].

Because of its momentum independence, the SOI takes
the role of an internal valley (and QD orbital) dependent
Zeeman field �BSOI along Sz, which combines with B to
the effective field in each valley B�

eff ¼ Bþ �BSOI. These

fields lift the spin degeneracy of the QD levels, while the
orbital effect of Eq. (4) lifts the energy degeneracy between
the two valleys for any Bz � 0. The QD levels turn into
spin-valley-energy filters. The effective fields define the
spin polarization axes a� / B�

eff , which are nonparallel if

BK
eff � BK0

eff , tunable byB, and such that the spin eigenstates
in each valley j � a�i fulfill ðS � a�Þj � a�i ¼ �j � a�i
(full polarization). If P�a� ¼ j � a�ih�a�j, spin measure-

ments can be reconstructed by electron transport over the
different QD levels by ðS � a�Þ ¼ Pþa� � P�a� .

Bell test in an ideal CNT-CPS.—In the double-QD
system shown in Fig. 1, the CNT bending changes the

orientation of BSOI and so of B�
eff . The spin polarization

axes a� in the left QD become distinct from the axes in the
right QD, which we call b�. We consider an ideal CPS,
characterized by a perfect Cooper pair splitting efficiency
with valley-independent pair injection (see discussion
below) and isolated sharp QD levels. Since any injected
Cooper pair splits onto the different levels in each QD (the
current consists only of split Cooper pairs), and the tunnel-
ing amplitude onto each dot is proportional to the spin
projection, the current collected at the normal leads in
resonant conditions for a given pair of levels is propor-
tional to hP�a� � P�b0�i and allows us to reconstruct the

spin correlatorsCa�;b�0 ¼ hðS � a�Þ � ðS � b�0 Þi [see Eq. (6)].
The availability of 2 spin projection axes per QD conse-
quently allows us to test the Bell inequality [9]

Q ¼ jCaK;bK
þ CaK;bK0 þ CaK0 ;bK

� CaK0 ;bK0 j � 2: (5)

Any nonentangled state (including the steady state density
matrix considered here) fulfills this inequality. A violation
Q> 2 is sufficient to prove entanglement. For a spin

singlet, a maximal Q ¼ 2
ffiffiffi
2

p
is obtained by orthogonal

aK ? aK0 , bK ? bK0 , and 45� between aK and bK.
Such optimal axes cannot be generally obtained in the
CNT-CPS, for which BSOI and �CNT are fixed by the
sample fabrication, and only B is tunable. Yet, as we
show in Fig. 2, this tunability is sufficient to obtain
Q> 2 as a function of the angle � of a rotating in-plane
field B ¼ Bðsin�; 0; cos�Þ (see Fig. 1), for B� jBSOIj.
The shown result is generic and we find similar Q> 2
for most CNT chiralities, diameters, and QD lengths.
Realistic systems.—In a realistic setup, the two QDs

remain coupled through the superconducting region, their
levels are broadened by the contacts, the splitting

FIG. 2 (color online). Values Q of the Bell equation (5) (left
panel) for an ideal bent CNT-CPS as a function of in-plane
B-field rotation angle �, for the lowest valence band orbitals in
a CNT of chirality (18, 10), jBj ¼ 0:4 T, �CNT ¼ 30�, � ¼
�0:08 meV, � ¼ �0:15 meV, and QD lengths of 200 nm.
For this situation, jBj=jBSOIj 	 �BgjBj=2j�� �j ¼ 0:34. The
horizontal lines mark the threshold Q ¼ 2 and the maximal
possible Q ¼ 2

ffiffiffi
2

p
. The right panels show the � dependence of

the level energies of both QDs. The spectra are identical up to the
shift by �CNT marked by the vertical dashed lines. The arrows
indicate the spin polarizations in a global spin basis, as used for
the determination of Q.
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efficiency is imperfect and electron pairs can tunnel onto
the same QD, the tunneling rates depend on the gate
voltages, and electrons can interact. Any measurement
probes the steady state density matrix � of the full CPS
system and not an ideal singlet state. The projections P�a� ,

P�b�0 are obtained by narrowing the measurement to an

energy window capturing the electron transport through the
corresponding level of each QD, typically by differential
conductance measurements tuned to the resonances corre-
sponding to the levels. The modified � together with the
measurement method leads to a distorted reconstruction of
the spin correlators, and we need to distinguish between
local and nonlocal distortion sources.

Local distortions in one QD are independent of the other
QD and modify, e.g., P�a� to Pþa0� , P�a00� . We can write

Pþa0� � P�a00� ¼ �ðS � ~a�Þ þ ð1� �ÞP~a� for an intermedi-

ate axis ~a�, 0 � � � 1, and a remaining projection P~a� .

The latter transforms any state into a product state, and
local distortions therefore lower the ideal value of Q by an
amount set by the various � for the different QD levels.
Assuming that the level broadening can be kept small so
that there is only little overlap between nearby resonances
(assisted also by a charging energy), the most important
source of local distortions is disorder scattering within
each QD. It mixes the wave functions in different valleys
[21,22], and the j � a�i are no longer the eigenstates.
While of central importance in metallic CNTs, in semicon-
ducting CNTs disorder scattering competes with the valley-
preserving semiconducting gap of typically �100 meV,
which has opposite signs in opposite valleys. If the disorder
scattering amplitude is smaller it has a negligible influence.
Therefore, semiconducting CNTs are preferable for testing
the Bell inequality.

Valley mixing at injection, however, is essential. Indeed,
if valleys and spins are correlated, for instance, if the
singlet splits always into opposite valleys, the transport
through other valley combinations does not provide any
information on the Cooper pairs and the construction of Q
is no longer possible. For a valid spin correlator measure-
ment the injection must mix valleys to produce a detectable
signal through all resonances, yet the precise degree of
mixing is unimportant.

Nonlocal distortions of the spin modify the spin projec-
tions as an effect of the entire CPS system, typically by
hybridization between the two QDs, and the measured
P�a� , P�b�0 become nonlocal operators. Such operators

can generate additional entanglement through wave func-
tion mixing between the left and right QDs. In the CPS
setup they are a source of error for detecting spin entangle-
ment. Yet with the full microscopic calculation discussed
next we can see that these nonlocal contributions can be
kept under control in realistic conditions.

Microscopic model.—To quantitatively access a realistic
system and to determine the optimal choice of measure-
ments that allows us to gain insight in the effects of local

and nonlocal distortions, we have investigated a micro-
scopic tight-binding model of the CNT-CPS. Our approach
follows Ref. [23], which we have complemented to include
magnetic fields by terms equivalent to Eq. (4) and valley
mixing at injection. As a result, we obtain the partial
conductances of the CPS due to Cooper pair splitting
(crossed Andreev reflections, GCAR), elastic cotunneling
through the superconducting region (GEC), and the local
Andreev scattering contributions at each QD (GAL, GAR).
From these quantities, transport from the superconductor
to the normal leads is expressed by the conductances
Gj ¼ 2ðGAj þGCARÞ (j ¼ L; R), and transport between

the normal leads by the nonlocal conductance Gnl ¼
GEC �GCAR.
In Fig. 3(a) we display a conductance map for a

semiconducting CNTas a function of the QD gate voltages

FIG. 3 (color online). Results from the microscopic calcula-
tion of a CPS, based on a zigzag CNT of chirality (20, 0)
with a bending angle �CNT 	 30�, in a field of jBj ¼ 0:5 T
(see the Supplemental Material [24]). The SOI energies � ¼
�0:10 meV and � ¼ �0:40 meV lead to jBj=jBSOIj 	
�BgjBj=2j�� �j ¼ 0:10. (a) Map of the conductance product
GLGR (units of e4=h2) as a function of QD gate voltages VL;R at

� ¼ 25�. The 4 levels of each QD give rise to the 4 resonances
labeled by�a�,�b�0 . Inside the black squares, the CPS acts as a
spin-valley filter for the projections P�a�P�b�0 , and integrating

the signal within each black square yields the corresponding
observable. (b) VL;R values marking the positions of the reso-

nances of the levels �a� and �b�0 of the two QDs as a function
of �. The curves are identical up to the shift by �CNT. Levels in
the same valley � see the same field B�

eff and are identified by

having the same curvature as a function of �. (c) Q as a function
of � for the conductances G given as subscripts of Q in the figure
legend. The Q values are obtained by analyzing data as shown in
panel (a) by the method described in the text. The yellow shaded
region marks the allowed range of violation of the Bell inequal-
ity for the spin singlets in the steady state.
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VL;R that tune the QD levels to resonance. Such a result is

useful for a Bell test if all 4 resonances in each QD are well
resolved and their 16 points of intersection, corresponding
to the products P�a� � P�b�0 , form single peaks and not

avoided crossings. To access this regime, we have chosen a
coupling between the superconductor and the CNT on the
order of the superconducting gap ( & 1 meV), and tuned
the coupling to the leads such that the resonances are well
resolved (see the Supplemental Material [24]). Similar
conditions have been obtained in experiments [21,22],
and such a regime can be reached for a wide variety of
samples and coupling strengths to the contacts.

To analyze the data we integrate the various conductan-
ces over regions centered at the crossings as shown by the
black squares in Fig. 3(a). From the resulting 16 integrals
G�a�;�b�0 we construct the spin correlators

Ca�;b�0 ¼
P

	;	0¼� 		0G	a�;	
0b�0P

	;	0¼� G	a�;	
0b�0

; (6)

which is a simple consequence from the fact that Pþa� �
P�a� ¼ ðS � a�Þ and Pþa� þ P�a� is the identity operator

(see the Supplemental Material [24]). From these Ca�;b�0 we

determineQ byEq. (5), with the liberty of placing the� sign
in front of any term in Eq. (5) to obtain the maximum Q.

The Cooper pair splitting amplitude is directly described
by GCAR, and the corresponding curve QGCAR

[Fig. 3(c)]

captures indeed a similar behavior as the ideal case of
Fig. 2, with Q> 2 in the � regions where the levels of
different valleys approach each other and the spin projec-
tions rotate [Fig. 3(b)]. The measurable conductances Gj,

however, contain, with GAj, contributions that represent

strong enough local distortions to suppress Q below 2.
In the right QD the local distortions are enhanced by level
overlaps close to � ¼ 60� where the K and K0 levels
become degenerate [Fig. 3(b)], and indeed QGR

decreases

in this region. In contrast, the left QD levels remain well
separated, andQGL

mirrors the upturn ofQGCAR
, withGCAR

overruling the GAL contribution. The same behavior with
GL $ GR is found near � ¼ �90�. On the other hand, Gnl

corresponds to an experiment of electron injection through
a normal lead and contains with GEC a component describ-
ing the uncorrelated single-particle transport. Since we find
that GEC and GCAR have a similar amplitude, we expect
that QGnl

�QGCAR
=2. However, GEC contains also the

higher order tunneling processes that represent the non-
local distortions, which may cause QGnl

to increase again.

Nonetheless, we find that QGnl
� 1 with a similar shape as

QGCAR
, indicating that the nonlocal distortions have a neg-

ligible effect.
While GCAR produces the purest indicator of spin entan-

glement, it is only indirectly accessible by experiments.
On the other hand, the directly measurableGj are obscured

by the local contributions of the GAj. A method of

circumventing this problem is to consider products of the
Gj, such asGLGR. Since the projections P 
 P�a� � P�b�0
eliminate all QD degrees of freedom, the product GLGR is
equivalent to a nonlocal current measurement with a
density matrix �0 whose nonlocal contribution is encoded
in P�0P / P�2P. By the higher power of � and the pro-
jections, the relative weight of the local contributions can
be reduced, while a spin singlet in P�P remains a spin
singlet in P�2P. In Fig. 3(c) we see that the corresponding
curve QGLGR

follows almost perfectly QGCAR
, showing that

the multiplication GLGR is powerful enough to suppress
the local distortions in the Gj. Therefore, a high splitting

efficiency of a CPS is not a primary requirement for the
proposed Bell test.
To demonstrate that the largeQ value is indeed an effect

of superconductivity, we show withQn
GLGR

the correspond-

ing curve for GLGR obtained for the normal state. The fact
that Qn

GLGR
	 0 is the strongest indicator that QGLGR

dem-

onstrates indeed the spin entanglement.
Finally, we have truncated the curves in Fig. 3 close to

� ¼ 60� and �90� where QD levels strongly overlap
[Fig. 3(b)] and spin correlators can no longer be recon-
structed. It is indeed important to maintain well separated
QD levels. Hence, the charging energy of the QDs, which
has been neglected in the microscopic calculation, plays
here an important role as it increases the level separation
but has much reduced exchange coupling due to the SOI
induced spin projections of the QD levels.
Conclusions.—We have demonstrated that due to SOI

effects bent CNT-CPS (or two CNTs under an angle) can
be used for entanglement detection in the steady state by a
violation of the Bell inequality. Notable for the Bell
inequality is that the set of axes a�, b�0 along which the
spin correlators must be measured can be arbitrary and the
precise axis orientations, i.e., the precise SOI strengths, do
not need to be known. This is an advantage over entangle-
ment witnesses [25] or quantum state tomography.
Although discussed for CNTs, the introduced concept of
entanglement detection is general and can be implemented
in any system allowing tunable spin-energy filtering. For
an ideal CNT-CPS, a violation of the Bell inequality can be
achieved for most CNTs over a large range of orientations
of an external field B with strength B� jBSOIj, which for
usual CNTs are<1 T. The robustness of this behavior was
confirmed by a microscopic calculation that incorporates
the local and nonlocal imperfections of a realistic system.
From the results we propose the use of the product of
conductances GLGR as the optimal observable for testing
the Bell inequality. We have furthermore argued that the
spin reconstruction in semiconducting CNTs is robust
against disorder.
To conclude, it should be noted that a bending of the

CNT is not an absolute requisite. An equivalent effect can
be obtained by applying individual B fields on the QDs or
by providing a constant field offset on one QD by placing a
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ferromagnet in its vicinity, if sufficient control of the
typical field strengths jBj � jBSOIj< 1 T can be granted.
If two separate CNTs are connected to the superconductor,
they should have similar diameters such that their BSOI are
comparable.
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