
Universality Classes in Constrained Crack Growth

Knut S. Gjerden,* Arne Stormo,† and Alex Hansen‡

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
(Received 11 January 2013; revised manuscript received 29 July 2013; published 24 September 2013)

Based on an extension of the fiber bundle model we investigate numerically the motion of a crack

front through a weak plane separating a soft and an infinitely stiff block. We find that there are two

regimes. At large scales the motion is consistent with the pinned elastic line model and we find a

roughness exponent equal to 0:39� 0:04 characterizing it. At smaller scales, coalescence of holes

dominates the motion, giving a roughness exponent consistent with 2=3, the gradient percolation value.

The length of the crack front is fractal in this regime. Its fractal dimension is 1:77� 0:02, consistent with

the hull of percolation clusters, 7=4. This suggests that the crack front is described by two universality

classes: on large scales, the pinned elastic line one and on small scales, the percolation universality class.
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Schmittbuhl and Måløy [1] were the first to study ex-
perimentally the roughness of a crack front moving along a
weak plane under mode I loading. By sintering two sand-
blasted plexiglass plates together and then plying them
apart from one edge, they were able to follow the motion
of the crack front moving along the sintered boundary. The
rough crack front turned out to be self-affine; i.e., its
height-height correlation function hðhðxþ�xÞ � hðxÞÞ2i
scaled as j�xj� , where � is the roughness exponent. hðxÞ
is the position of the crack front with respect to a base line
orthogonal to the average crack growth direction and x is
the coordinate along this base line. The roughness expo-
nent was found to be � ¼ 0:55� 0:05. A couple of years
before, Schmittbuhl et al. [2] studied numerically a model
of such constrained crack growth based on regarding the
motion of the crack front as that of a pinned elastic line, the
fluctuating line model. This top down approach was based
on an earlier idea by Bouchaud et al. [3]. The conclusion of
Schmittbuhl et al. was that the front should be self-affine,
with a roughness exponent � ¼ 0:35� 0:05. This value
was refined to 0:388� 0:002 by Rosso and Krauth [4]. The
large discrepancy between the numerical and experimental
results—the latter having been refined to � ¼ 0:63� 0:03
by improving the statistical analysis [5]—spurred a lively
quest for an explanation that only today seems to converge
towards a satisfactory understanding of the underlying
physics, see, e.g., [6,7] for a review.

A different, bottom-up approach to the motion of the
crack front was put forward by Schmittbuhl, Hansen, and
Batrouni [8], based on a fiber bundle model [9] connected
to a soft clamp [10]. In this model, the crack front is an
emergent property. The underlying idea here was that the
crack front does not advance due to a competition between
effective elastic forces and pinning forces at the front, but
by coalescence of damage in front of the crack with the
advancing crack itself. Such an idea had been put forward
in a more general context by Bouchaud et al. [11] the
year before. Schmittbuhl, Hansen, and Batrouni found a

roughness exponent of � ¼ 0:60� 0:05, which is consis-
tent with the experimental results.
Recently, Santucci et al. [12] reanalyzed data from a

number of earlier studies, including [5], finding that the
crack front has two scaling regimes: one small-scale
regime described by a roughness exponent �� ¼ 0:60�
0:05 and a large-scale regime described by a roughness
exponent �þ ¼ 0:35� 0:05.
We suggest in this Letter that there are indeed two

competing mechanisms involved in generating the scaling
properties seen in the roughness of the crack front: on
small scales coalescence dominates, whereas on large
scales, the fluctuating line picture is correct. There is a
crossover between the regimes where either of the two
mechanisms dominate associated with a well-defined
crossover length scale.
Our numerical work strongly suggest that the coales-

cence mechanism seen at small scales is controlled by the
ordinary percolation critical point, leading to percolation
exponents. This is in contrast to Schmittbuhl, Hansen, and
Batrouni [8] who suggested a new percolationlike univer-
sality class, but consistent with recent theoretical work on
fracture in the fuse model [13].
We note an earlier attempt at explaining the two scaling

regimes seen in Ref. [12] based solely on the fluctuating
line model [14]. Here, Laurson, Santucci, and Zapperi [14]
relate the crossover to the Larkin length scale of the crack
front [15]. This is in this context the length scale at which
the roughness of the front is comparable to the correlation
length inherent to the pinning disorder. In our model, the
large scale fluctuating line picture is an emergent property
as is the small-scale percolationlike behavior.
L� L elastic fibers are placed in a square lattice

between two clamps. One clamp is infinitely stiff whereas
the other has a finite Young modulus E and a Poisson ratio
�. All fibers are equally long and have the same elastic
constant k. We measure the position of the stiff clamp with
respect to its position when all fibers carry zero force, D.
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The force carried by the fiber at position (i, j), where i and
j are coordinates in a Cartesian coordinate system oriented
along the edges of the system, is then

fði;jÞ ¼ �kðuði;jÞ �DÞ; (1)

where uði;jÞ is the fiber’s elongation. The fibers redistribute
the forces they carry through the response of the clamp
with finite elasticity. The redistribution is accomplished by
using the Green function connecting the force fðm;nÞ acting
on the clamp from fiber (m, n) with the deformation uði;jÞ at
fiber (i, j), [16]

uði;jÞ ¼
X

ðm;nÞ
Gði;jÞ;ðm;nÞfðm;nÞ; (2a)

Gði;jÞ;ðm;nÞ ¼ 1� �2

�Ea2

Z a=2

�a=2
dx

�
Z a=2

�a=2
dy

1

j~rði;jÞ � ~rðmþx;nþyÞj : (2b)

where a is the distance between neighboring fibers.
~rði;jÞ � ~rðm;nÞ is the distance between fibers (i, j) and (m,

n) and the integration runs over the a� a square around
fiber (m, n). This equation set is solved using a Fourier
accelerated conjugate gradient method [17,18].

The Green function, Eq. (2b), is proportional to ðEaÞ�1.
The elastic constant of the fibers, k, must be proportional to
a2. The linear size of the system is aL. Hence, by changing
the linear size of the system without changing the discre-
tization a, we change L ! �L but leave (Ea) and k
unchanged. If, on the other hand, we change the discreti-
zation without changing the linear size of the system, we
simultaneously set L ! �L, ðEaÞ ! �ðEaÞ and k ! k=�2.
We define the scaled Young modulus e ¼ ðEaÞ=L. Hence,
changing e without changing k is equivalent to changing
L—and hence the linear size of the system—while keeping
the elastic properties of the system constant [19].

The fibers are broken by using the quasistatic approach
[20]: we assign to each fiber (i, j) a threshold value tði;jÞ.
They are then broken one at a time by each time identifying
maxði;jÞðfði;jÞ=tði;jÞÞ for D ¼ 1. This ratio is then used to

read off the value D at which the next fiber breaks.
In the constrained crack growth experiments of

Schmittbuhl and Måløy [1], the two sintered plexiglass
plates were plied apart from one edge. In the numerical
modeling of Schmittbuhl, Hansen, and Batrouni [8], an

asymmetric loading was accomplished by introducing a
linear gradient in D. We introduce a gradient in the thresh-
old distribution, tði;jÞ ¼ gjþ rði;jÞ, where g is the gradient

and rði;jÞ is a random number drawn from a flat distribution

on the unit interval. In the limit of large Young modulus E,
this system becomes equivalent to the gradient percolation
problem [21,22].
We implement the ‘‘conveyor belt’’ technique [23,24]

where a new upper row of intact fibers is added and a lower
row of broken fibers removed from the system at regular
intervals. This makes it possible to follow the advancing
crack front indefinitely; see [24].
Figure 1 shows two examples of typical crack fronts

representative of a stiff (high e ¼ 0:8) and a soft system
(low e ¼ 2� 10�3). The crack front propagates upwards
in the figure. A high e value is equivalent to observing the
system on small scales and a low e value corresponds to
large scales.
We identify the crack front by first eliminating all islands

of surviving fibers behind it and all islands of failed fibers in
front of it. We measure ‘‘time’’ n in terms of the number of
failed fibers. After an initial period, the system settles into a
steady state. We then record the position of the crack front
j ¼ jði; n ¼ 0Þ after having set n ¼ 0. We then define the
position at later times n > 0 relative to this initial position,
hiðnÞ ¼ jði; nÞ � jði; n ¼ 0Þ. This is the same definition as
was used by Schmittbuhl and Måløy [1]. The front as it has
now been definedwill contain overhangs. That is, theremay
be multiple values of hiðnÞ for the same i and n values. We
only keep the largest hiðnÞ; i.e., we implement the solid-
on-solid (SOS) front. We define the average position of the
front as hhðnÞi ¼ P

L
i¼1 hiðnÞ=L and the front width as

wðnÞ2 ¼ P
L
i¼1ðhiðnÞ � hhðnÞiÞ2=L.

We will in the following explore the model going
from large to small values of the Young modulus E while
keeping k fixed. As already discussed, this is equivalent to
changing the system size L while keeping E fixed.
Further description of the model together with illustra-

tive films have been added as Supplemental Material [25].
We analyze the fracture fronts in the following using the

average wavelet coefficient (AWC) method [26,27]. We
transform the front hiðnÞ using the Daubechies-4 wavelet,
hiðnÞ ! wa;b where a is scale and b is position (and we

have suppressed the n dependency). We then average jwa;bj
for each length scale a over position b, and if hiðnÞ is self-
affine with a roughness exponent � , we have

FIG. 1. Parts of the crack fronts obtained in the simulations. Black represents broken bonds and white represents unbroken bonds.
To the left, (a) is a system with a high rescaled Young modulus e being driven forward (upward) primarily by coalescence with damage
forming ahead of the crack front. (b) is a system with a low e. This system is being driven forward by overcoming pinning. Small
e ¼ 2� 10�3 is equivalent to a larger system than one with a large e ¼ 0:8.
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WðaÞ ¼ hjwa;bjib � a�þ1=2: (3)

We start by considering systems with small scaled
Young modulus e. This is a soft system at small length
scales—or equivalently, a stiffer system at large length
scales. We set e ¼ 7:8125� 10�4. The fronts in this
regime have an appearance as in Fig. 1(b). In Fig. 2, we
plot the averaged wavelet coefficient WðaÞ against the

scale a. The data follow a power law, WðaÞ � a0:39þ1=2,
leading to a roughness exponent of

�þ ¼ 0:39� 0:04; (4)

entirely consistent with the large scale roughness exponent
measured by Santucci et al. [12], �þ ¼ 0:35� 0:05.

We now turn to large scaled Young modulus, i.e., stiff
systems—or, equivalently, softer systems on small length
scales. Hence, fronts appear as in Fig. 1(a). We set in the
following e ¼ 3:125. The corresponding plot of averaged
wavelet coefficientWðaÞ vs scale a is shown in the inset in
Fig. 3(a). The different curves correspond to different gra-
dients g and L. Repeating the analysis of Sapoval, Rosso,
and Gouyet [21] and Hansen et al. [28] for gradient perco-
lation, we assume that the front has an isotropic correlation
length � associated with it. This correlation length is related

to the gradient through the relation �� g��=ð1þ�Þ ¼ g�4=7,
where � ¼ 4=3 is the percolation correlation length expo-
nent. If the front is in the universality class of percolation,

we expect data collapse in Fig. 3(a) by rescaling WðaÞ !
WðaÞ=� ¼ WðaÞ=g�6=7 and a ! a=� ¼ a=g�4=7. There
are two distinct regions in the figure. For large values of

a=g�4=7, WðaÞ=g�6=7 is independent of a=g�4=7. Hence,
the front has the character of uncorrelated noise. We will

discuss this further on. For small a=g�4=7, the data follow a
power law. We show in the figure [Fig. 3(a)] a straight line
with slope 7=6 ¼ 2=3þ 1=2. Hence, the data are consistent
with the fronts being self-affine with

�� ¼ 2=3; (5)

consistent with gradient percolation [28] and with the ex-
perimental value of Santucci et al. [12], �� ¼ 0:60� 0:05.
In order to further the analysis, we follow the procedure

in [28] by smoothening the fronts by removing the jumps
due to the overhangs through the transformation

hiðnÞ ! hki ðnÞ ¼
Xi

m¼0

sgn½hmþ1ðnÞ � hmðnÞ�

� jhmþ1ðnÞ � hmðnÞjk; (6)

when k ! 0 [29]. Hence, all steps are equal to one in h0i ðnÞ,
all overhangs have been removed. We ensure by this
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FIG. 2 (color online). Averaged wavelet coefficient WðaÞ
based on transforming hi vs a for e ¼ 7:8125� 10�4, L ¼
256 (g ¼ 0:006 25, averaged over 4200 fronts), and L ¼ 512
(g ¼ 0:003 125, averaged over 850 fronts). The slope of the
straight line is 0:39þ 1=2.
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FIG. 3 (color online). (a) Averaged wavelet coefficients WðaÞ
of the SOS front hi vs scale a. The straight line has slope 2=3þ
1=2 ¼ 6=7. The inset shows the unscaled data. The data are
based on e ¼ 3:125, L ¼ 256 (g ¼ 0:004, 0.005, 0.01, 0.02, and
0.03). (b) Average wavelet coefficients WðaÞ of the SOS fronts
h0i where the overhangs have been removed. The long-dashed

line has slope 2=3þ 1=2 ¼ 6=7 and the short-dashed line has
slope 1=2þ 1=2 ¼ 1. In both (a) and (b), � ¼ � ¼ 4=7. The
data are based on e ¼ 3:125, L ¼ 64 (g ¼ 0:018 and 0.02,
averaged over 1426 fronts), L ¼ 128 (g ¼ 0:008, 0.01, 0.03,
and 0.05, averaged over 100 to 500 fronts), L ¼ 256 (g ¼ 0:004,
0.005, 0.008, 0.01, 0.015, 0.02, 0.025, 0.03, and 0.035, averaged
over 30 to 500 fronts), and L ¼ 512 (g ¼ 0:002, averaged over
50 fronts).
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procedure that the scaling properties of the roughness are
due to self-affinity and not due to the overhangs which are
prevalent in this regime.

We plot in Fig. 3(b) the rescaled WðaÞ=g�2=3 based on

transforming h0i vs the rescaled a=g�4=7, following the
analysis of Hansen et al. [28]. The two straight lines that
have been added to the figure have slopes 2=3þ 1=2 ¼
7=6 and 1=2þ 1=2 ¼ 1, respectively. On small scales, the
fronts are then self-affine with a roughness exponent
�� ¼ 2=3—the gradient percolation value. On larger
scales and with the overhangs removed, one would naively
have expected to observe the fluctuating line regime char-
acterized by a roughness exponent �þ ¼ 0:39. However,
by removing the overhangs, the effective roughness expo-
nent one measures is maxð1=2; �þÞ, which in this case is
1=2 [29]. Figure 3(b) then shows the crossover from a
roughness exponent consistent with ordinary gradient per-
colation to a plain random walk exponent which is a result
of the smoothening process.

Hence, the scaling properties seen on small scales are
consistent with uncorrelated gradient percolation. This is
in constrast to the analysis of Schmittbuhl, Hansen,
and Batrouni [8], which suggested a correlated gradient
percolation process.

Roughness exponents are notoriously difficult to mea-
sure. The data presented in Fig. 3 are not of sufficient
quality to warrant firm conclusions on the small-scale
universality class by themselves. We therefore measure
the fractal dimension of the fronts. Leaving the SOS as-
sumption, we now follow the front as shown in Fig. 1. The
front has a length l. For small values of the scaled Young
modulus e, there are no (or very few) overhangs and we
expect l to be proportional to L: it is not fractal. However,
for large e where overhangs are prevalent, we do expect it
to be fractal. We assume that there is a correlation length
� and that the front is fractal up to this scale. Hence,
the length of the front l then scales as l� �Df ðL=�Þ.
From Sapoval, Rosso, and Gouyet [21], we know that

�� g��=ð1þ�Þ. We now set g ¼ c=L, where c is a constant.
Hence, we find

l� Lð�Dfþ1Þ=ð�þ1Þ � L10=7; (7)

where � ¼ 4=3 and Df ¼ 7=4 [22]. We show in Fig. 4,

l=L10=7 as a function of the scaled Young modulus, e. For
large values of e, there is excellent data collapse. For small
values of e, there is data collapse when l=L is plotted
against e, see the insert of Fig. 4, indicating that the front
is not fractal in this regime. We are seeing the crossover
from the coalescence-dominated regime to the fluctuating
line regime as e moves from large to smaller values. Since
e ¼ E=L, we may keep E fixed and change e by changing
L. Hence, the coalescence regime is a small-scale regime
whereas the fluctating line regime is a large-scale regime.

If we work backwards and search for the best scaling
exponent to produce data collapse in Fig. 4, we find l=L1:44.

This gives Df ¼ 1:77� 0:02, consistent with the percola-

tion value 7=4.
We have through the use of a single bottom-up model

based on the fiber bundle model with a soft clamp and a
gradient in the breaking threshold, been able to identify
two mechanisms by which the fracture front propagates.
On small scales, it is coalescence of damage that domi-
nates, whereas on large scales the front advances as
described by the fluctuating line model. The coalescence
regime is in the universality class of ordinary percolation.
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