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Optomechanical systems have been shown both theoretically and experimentally to exhibit an analogon

to atomic electromagnetically induced transparency, with sharp transmission features that are controlled

by a second laser beam. Here we investigate these effects in the regime where the fundamental nonlinear

nature of the optomechanical interaction becomes important. We demonstrate that pulsed transistorlike

switching of transmission still works even in this regime. We also show that optomechanically induced

transparency at the second mechanical sideband could be a sensitive tool to see first indications of the

nonlinear quantum nature of the optomechanical interaction even for single-photon coupling strengths

significantly smaller than the cavity linewidth.
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Introduction.—Optomechanics explores the coupling
between photons and phonons via radiation pressure. It
aims at applications in classical and quantum information
processing as well as ultrasensitive measurements and tests
of fundamental quantum effects using mesoscopic or
macroscopic systems [1,2]. Recently, a feature called opto-
mechanically induced transparency (OMIT) has been pre-
dicted theoretically [3] and observed experimentally [4–6]:
The photon transmission through an optomechanical cav-
ity is drastically influenced when introducing a second
laser beam. This leads to the appearance of very sharp
features in the transmission signal, which can be controlled
by the second beam. OMIT can thus be employed for
slowing and stopping light or for operating a ‘‘transistor,’’
where photon transmission is switched on and off optically
[3,4,6,7]. OMIT is an analogon of atomic electromagneti-
cally induced transparency [8], where a medium consisting
of three-level atoms can be made transparent by illuminat-
ing it with a second laser.

The optomechanical interaction is fundamentally non-
linear at the quantum level. However, in most optomechan-
ical systems the coupling between single photons and
phonons is small compared to dissipation rates (except in
cold atom clouds [9–11], which have other constraints). It
will therefore be extremely challenging to detect effects of
this nonlinearity on the quantum level. Indeed, all the
optomechanical quantum phenomena observed so far can
be described in a simpler linear model, where the coupling
is effectively enhanced via the photon number.

Nevertheless, experiments are currently making
progress in increasing the coupling strength [12–15], com-
ing closer to the nonlinear quantum regime. That regime
has attracted large theoretical interest leading to the pre-
diction of optical Schrödinger cat states [16,17], a classical
to quantum crossover in nonlinear optomechanical systems
[18], non-Gaussian [19] and nonclassical mechanical states
[20–22], as well as multiple cooling resonances [23].

Certain dark states [24], photon antibunching [25,26],
a crossover from sub-Poissonian to super-Poissonian
statistics, and photon cascades [26] may be observed.
Two-mode setups [27,28] and collective effects in opto-
mechanical arrays [29] have been shown to be favorable
for reaching strong quantum nonlinearities.
In this Letter, we go beyond the classical analysis of

OMIT [3,4,30,31] and analyze OMIT in the nonlinear
quantum regime. By simulations of the full quantum dis-
sipative dynamics, we study the spectroscopic signal and

FIG. 1 (color online). (a) Standard optomechanical setup
driven by a control and a probe laser. (b) Classical expectation
of the OMIT signal as a function of the probe and control
detuning, cf. Eq. (6). If the beat frequency of the two lasers
j!c �!pj ��, a signal is expected (dotted black lines). We

study the OMIT signal at the circles. In particular, we find an
OMIT signal at the second mechanical sideband (thick red
circle) even at moderate single-photon coupling, where a clas-
sical analysis fails to show the signal. This is a clear signature of
the optomechanical quantum nonlinearity. (c) Field amplitude in
a frame rotating at the control laser frequency !c. The control
generates a constant transmission amplitude ~� (dashed red line).
The probe induces oscillations at the beat frequency !p �!c.

The amplitude of these oscillations, Eq. (4), is our signal.
[Parameters: g ¼ g0j�j ¼ 0:08 �, � ¼ �=8, �M ¼ 0:01 �.]
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the time evolution during pulsed operation. In analyzing
OMIT at mechanical sidebands, we find that OMIT could
be a crucial tool to observe first telltale effects of the
nonlinear quantum regime even for single-photon coupling
strengths much smaller than the cavity linewidth, in
contrast to the standard single-beam situation [19,25].

Model.—We consider a generic optomechanical system,
where an optical cavity is coupled to mechanical motion,
cf. Fig. 1(a). The system’s Hamiltonian reads [32]

Ĥ ¼ @!cavâ
yâþ @�b̂yb̂� @g0ðb̂y þ b̂Þâyâþ Ĥdr; (1)

where â (b̂) is the photon (phonon) annihilation operator,
!cav (�) the cavity (mechanical) resonance frequency, and
g0 the optomechanical coupling between single photons

and phonons. Ĥdr describes the two-tone driving,

Ĥ dr ¼ @½"ce�i!ct þ "pe
�i!pt�ây þ H:c:; (2)

where !c (!p) and "c ("p) are the control (probe)

laser frequency and amplitude, respectively. In order to
neglect other mechanical resonances, one has to assume
g0 � �. We also assume near-resonant excitation (and
narrow-band detection) of the mechanical sidebands under
consideration.

The optomechanical interaction can be diagonalized (for
"c;p ¼ 0) by shifting the mechanical equilibrium position

by �x / 2nag0=� depending on the photon number na
(‘‘polaron transformation’’) [16,17]. This will allow us
to understand OMIT in terms of interference pathways in
the resulting level scheme. The corresponding eigenstates
read jna; nbi, where na (nb) is the number of photons
(phonons in the shifted frame). The eigenenergies read
Eðna;nbÞ=@¼!eff

cavnaþ�nb�g20naðna�1Þ=� [16,17],

where !eff
cav ¼ !cav � g20=� is the effective cavity reso-

nance frequency. The control or probe detuning from !eff
cav

is defined as �c=p ¼ !c=p �!eff
cav.

Dissipative dynamics.—The dissipative dynamics for
weak optomechanical coupling can be described by a
Lindblad master equation

_̂� ¼ i

@
½�̂; Ĥ� þ �D½â��̂þ �Mðnth þ 1ÞD½b̂��̂

þ �MnthD½b̂y��̂; (3)

where �̂ denotes the density matrix for the optical and
mechanical mode. � is the photon loss rate (due to loss
through both, input and output mirror), and �M is the
phonon decay rate. nth is the thermal occupancy of the

mechanical bath and D½Â��̂ ¼ Â �̂ Ây � ÂyÂ �̂ =2�
�̂ÂyÂ=2 is the Lindblad dissipation superoperator. We
solve (3) in the time domain numerically. This allows us
to also consider pulse-based schemes.

Two-tone transmission.—In the steady state, the intra-
cavity field amplitude in a frame rotating at the control
frequency !c is defined by

hâi ¼ �þ "p½�a1e�ið!p�!cÞt þ �a�1e
ið!p�!cÞt�: (4)

The control beam induces a constant amplitude �, whereas
�a�1 are two (first-order) sidebands due to the probe.
Higher harmonics of the beat frequency !p �!c

are also present due to the nonlinear interaction.
However, they are weak in our analysis and have been
omitted in (4).
The experimentally accessible transmitted field ampli-

tude hâouti is related to the cavity field (4) by the input-
output relation hâouti ¼ ffiffiffiffiffiffiffi

�O
p hâi [33], where �O is the

output mirror decay rate. In the following, we analyze
what we term the normalized probe beam transmission:

j�~aj2 ¼ �O"
2
pðj�a1j2 þ j�a�1j2Þ=j�amax

out j2: (5)

This is essentially the intensity transmitted at the probe
beam frequency !p and at the other sideband, 2!c �!p,

divided by the incoming probe intensity j�amax
out j2 ¼ �O �

4"2p=�
2. j�a�1j can be measured via heterodyning [34],

i.e., mixing âout with a local oscillator at !c and obtaining
the power in the signal at !p �!c.

To isolate signatures in the probe beam transmission
which emerge due to the presence of the control beam,
we introduce the ‘‘OMIT signal.’’ It is defined as the
difference of j�~aj2 with and without control laser.
Standard prediction.—OMIT has so far been studied

only in the linearized regime of optomechanics, where
the quantum nonlinearity is neglected. In this regime, the
OMIT signal depends only on the product g0j�j of
the coupling and the intracavity field amplitude � ¼
i"c=ði�c � �=2Þ. For this to be valid, g0 � �.
We recall that a common OMIT signature arises when

the control laser drives the cavity on the red sideband, i.e.,
�c ¼ ��. The probe beam transmission as a function of
the probe detuning �p then shows a transmission dip on

resonance (i.e., �p ¼ 0), cf. Fig. 2(b). The dip’s width is

�M þ �opt � � (with �opt ¼ 4g20j�j2=�). The normalized

probe beam transmission reads [3,30]

j�~aj2 ¼ �2

4
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; (6)

where ��1½!�¼1�ð!=�Þ2� i!�M=�
2 is the (rescaled)

mechanical susceptibility.
If �p � 0, the beat frequency !p �!c between probe

and control is given by the mechanical frequency�. Thus,
the mechanical resonator is driven by a force oscillating at
its eigenfrequency and the resonator starts to oscillate
coherently. This motion induces sidebands on the cavity
field, generating photons with frequency !p. These inter-

fere destructively with the probe beam, leading to a trans-
mission dip. Typically, OMIT has been studied in a regime
where �M � �opt and g0j�j � � � � [4–6], such that

the OMIT dip’s width is ��opt.
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We now focus on the regime where the quantum non-
linearity becomes important. Quantum nonlinear features
can be unambiguously distinguished from classical effects
(or linear quantum effects) by studying their dependence
on the ‘‘quantum parameter’’ g0=� [9,18]. Let us imagine
that Planck’s constant @ ! 0. In this limit, all classical
effects remain while all quantum effects become vanish-
ingly small. In the context of optomechanics, varying @ is
equivalent to keeping all classical parameters (�; �; . . . )

fixed while tuning the quantum parameter g0=� / ffiffiffi

@
p

[2,9,18]. As g0 ! 0, we increase the laser power "c; hence,
g0j�j ¼ const. This retains the size of the classical OMIT
signal, cf. (6). In contrast, any truly quantum-mechanical
nonlinear effects vanish as g0 ! 0. Note that for our
parameters, a single photon can have a large impact
[19,25], so we limit ourselves to weak laser driving, i.e.,
"p, "c � � (thus, j�j � 1) in contrast to the standard

OMIT scenario, where �p;c can be arbitrary. This also

implies that the OMIT dip’s width is ��M.
Main OMIT dip.—To compare against classical

OMIT predictions, we first focus on the OMIT dip at
resonance, while keeping the full nonlinear quantum inter-
action of (1), cf. Fig. 2(b). Consider the level scheme of
Fig. 2(a). Since both lasers are assumed to be weak, only
the zero and one photon ladders are important. We again
assume �c ¼ ��, such that the control hybridizes the
states j0; 1i $ j1; 0i. This leads to a destructive interfer-
ence of the two probe excitation pathways at �p ¼ 0 and

thus the OMIT dip.
The most important change in the OMIT signal is that

the main OMIT dip’s depth is modified due to shifted
phonon states: The probe laser drives the transition

j0; 0i $ j1; 0i resonantly, i.e., the transition of a 0-phonon
state and a shifted 1-phonon state. This leads to the Franck-
Condon factor exp½�ðg0=�Þ2� which will enter the nu-
merator of (6) [19]. Also, the photon number hâyâi (j�j2
in the classical theory) entering the denominator of (6) is
changed in this regime [19]. When taking these modifica-
tions into account in (6) we obtain quantitative agreement,
cf. Fig. 2(b).
Thus, the standard OMIT dip in the nonlinear quantum

regime is still controlled by the photon number hâyâi only,
allowing the operation of an optomechanical transistor in a
pulsed scheme.
Optomechanical transistor.—Let us consider a resonant

probe beam. At t ¼ 0, we ramp-up the control power
linearly (to avoid spurious transients). At �tswitch � 1,
the red detuned control (�c ¼ ��) reaches its maximum
power, cf. Fig. 3(a). This decreases the probe beam trans-
mission j�~aj2 on a time scale set by the OMIT dip’s width
���1

M . When reaching the steady state, the control beam
is linearly switched off. Then, j�~aj2 increases rapidly on a
scale ���1, cf. Fig. 3(b), because control photons decay
out of the cavity on this time scale. The influence of
the control can also be seen in the population pna;nb of

the states jna; nbi, cf. Fig. 3(c). Control and probe
together first increase the population of the one-photon
state j1; 0i. Then, on a scale ���1

M , the one-phonon
states population p0;1 increases; thus, j�~aj2 decreases.

Furthermore, population between the zero and one photon
ladder is exchanged coherently, leading to oscillations at
!p �!c ¼ �.

Quantum to classical crossover.—We now discuss how
signatures of the quantum nonlinearity could be observed
using OMIT even if the coupling strength g0 < �, which is
relevant for present experiments. As discussed above, to
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FIG. 2 (color online). Quantum nonlinearities and OMIT.
(a) Energy level scheme of the optomechanical system with
levels jna; nbi, cf. main text. na (nb) denotes the number of
photons (phonons). Here, for example, the probe couples
j0; 0i $ j1; 0i since the detuning �p ¼ !p �!eff

cav ¼ 0. The

control couples j0; 1i $ j1; 0i since �c ¼ !c �!eff
cav ¼ ��.

(b) The OMIT signal. Orange circles: Numerical results for
g0=� ¼ 4; black line: expectation for the standard, classical
regime, Eq. (6); blue line: expectation of Eq. (6), but including
Franck-Condon factors and j�j2 ! hâyâi, see main text.
[Parameters: � ¼ �=40, �M ¼ 10�3 �, "c ¼ 10�2 �, �c ¼
��, nth ¼ 0.]
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FIG. 3 (color online). Optomechanical transistor for large
g0=�. (a) The probe drives the cavity continuously. At time
t ¼ 0, the control laser power is ramped up linearly until
�tswitch � 1. This decreases the normalized probe beam trans-
mission on a scale ���1

M , cf. (b). When switching off the control
linearly, j�~aj2 increases on a scale���1 � ��1

M . (c) Occupation
transfer between individual quantum states induced by the
control. Oscillations at � are clearly visible in p10 (i.e., for
the state with 1 photon, 0 phonons). [Parameters: Same as in
Fig. 2, �p ¼ 0, �tswitch ¼ 100.]
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distinguish nonlinear quantum effects from classical
effects, we study the OMIT signal as a function of the
quantum parameter g0=� while keeping the classical
prediction (6) unchanged.

The most significant signature of the quantum nonline-
arity can be obtained for a resonant control beam, i.e.,
�c ¼ 0 and observing the OMIT signal close to the me-
chanical sidebands, i.e., �p � n�, where n ¼ 1; 2; . . . .

At the first mechanical sideband (n ¼ 1), the classical
theory (6) predicts a Fano resonance, cf. Fig. 4(a). Fano
resonances in general have recently been discussed in the
context of optomechanics [35–39]. The Fano resonance
emerges because the probe beam probes both the first-
order, off-resonant j1; 0i $ j0; 0i transition plus the
second-order, resonant transition j0; 1i $ j0; 0i, the latter
being a joint effect of the probe and control. For small
quantum parameters g0 � �, the OMIT signal converges
to the classical expectation. Upon increasing g0=�, the
Fano resonance becomes slightly more pronounced as the
relevant j0; 0i $ j1; 1i transition becomes more likely due
to the Franck-Condon factor �ðg0=�Þ (in leading order).
Note that the strength of the OMIT signal can be increased
by increasing g0j�j.

Second sideband OMIT as a sensitive probe.—Let us
consider the second mechanical sideband, �p � 2 �,

while, again, �c ¼ 0, cf. Fig. 4(b). The classical analysis
(whether linearized or fully nonlinear [31]) fails to show an
OMIT signature here, because it does not capture transi-
tions to sidebands n > 1. However, when including the
quantum nonlinearity, OMIT signatures do exist. These
vanish in the classical limit g0=� ! 0 and are thus solely
due to the quantum nonlinearity.

This feature emerges due to the two-photon transition
j0; 0i � j1; 2i � j0; 2i, with additional interference of off-
resonant transitions probed by the probe beam. The two-
photon transition is enabled due to shifted phonon states.
Importantly, we observe this significant feature even for
moderate coupling g0 ¼ �=10 (in contrast to other quan-
tum signatures which require g0 > � [19,25]). The OMIT
signal increases with increasing g0=�. This is because the
relevant higher-order sideband transition rates increase due
to an increase of the Franck-Condon factors with g0. Thus,
we predict that a two-tone driving experiment should be
able to identify quantum signatures of the optomechanical
interaction even for moderate single-photon coupling
strengths g0 < � � �.

We now discuss the influence of temperature on the
OMIT signal at the second sideband, cf. Fig. 4(c). As we
increase temperature, we find that the Fano resonance
amplitude even increases, while the dependence on g0=�
indicates that the effect is still a signature of quantum
nonlinearities, vanishing in the classical limit. A possible
explanation is that higher phonon states are now thermally
occupied. Thus, the transitions j0; nbi $ j1; nb þ 2i
with nb > 0 are additionally probed. The corresponding

Franck-Condon factors increase with nb (if g0 � �),
leading to the observed enhancement.
We now discuss what happens as we increase the probe

driving strength "p. We find that even for "p � "c the

OMIT signal does not change. The probe beam drives
the cavity on the second sideband and thus the number of
probe photons inside the cavity is still much lower than the
number of control photons (as long as "p="c � �=�)—

the probe is still a small perturbation. This is experimen-
tally relevant, since one can therefore increase the absolute
probe transmission by increasing the probe intensity.
This also holds for the first mechanical sideband (but not
for the main OMIT dip, where the OMIT signal begins to
be suppressed even for "p="c � �=�).

We conclude that the challenge to bring out nonlinear
quantum signatures in optomechanical systems will be
greatly aided by two-tone driving.
We acknowledge fruitful discussions with Max Ludwig,

Vittorio Peano, Steven Habraken, and Aashish Clerk.
Financial support from the DARPA ORCHID, the
Emmy-Noether program, the European Research
Council, and the ITN cQOM is gratefully acknowledged.
Note added.—Recently, two related works have

appeared [40,41].
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FIG. 4 (color online). Quantum to classical crossover. The
OMIT signal at the second sideband (b) vanishes in the classical
limit g0=� ! 0, hence being a clear signature of the quantum
nonlinearity. It is visible even for moderate coupling strengths
g0 < �. The yellow regions indicate the OMIT features’s width
��M. (a) Since �p ¼ � and �c ¼ 0, probe and control couple

the levels j0; 0i $ j1; 1i and j0; 1i $ j1; 1i, respectively.
(b) Since �p ¼ 2 � and �c ¼ 0, j0; 0i $ j1; 2i and j0; 2i $
j1; 2i are coupled, respectively. Symbols: OMIT signal for differ-
ent g0=� where g0j�j and � are kept fixed. Gray line: Classical
expectation, cf. (6). Inset of (b): OMIT signal for g0=� ¼ 1=10.
The axes are the same as in (b). The OMIT signal varies in a
range �10�7. Note that the signal strength can be increased by
increasing g0j�j. (c) Amplitude of the Fano resonance at the
second sideband (i.e., the difference between the maximum and
minimum) versus the thermal phonon number nth (normalized
to the amplitude at nth ¼ 0). [Parameters: � ¼ �=8, �M ¼
10�3 �, �c ¼ 0, nth ¼ 0, g0"c ¼ 1:25	 10�3 �2 ¼ const
(this value has been chosen to keep the Hilbert space manageable
as g0=� ! 0). (c) Same as in (b), g0=� ¼ 1=2.]
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