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Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the

Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-

range potentials, we develop the exact tensor hypercontraction method, which provides a quantized

renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable

tensor factorization of the configuration-space matrix elements. This representation allows for substantial

computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to

difficult ‘‘exchangelike’’ contractions.
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The physics of many-body quantum systems is often
captured by local, finite-range N-body potentials

V̂ðx1; . . . ; xNÞ, where x is any convenient parametrization
of the physical space, e.g., position space ðx � rÞ or
momentum space ðx � kÞ. Given some real, finite, one-
particle Ritz-Galerkin basis set fc iðxÞg, the configuration-

space representation of V̂ is the integral tensor

hi . . . njV̂ji0 . . . n0i
¼

Z
dx1 � � �

Z
dxNc iðx1Þ � � � c nðxNÞV̂ðx1; . . . ; xNÞ

� c i0 ðx1Þ � � � c n0 ðxNÞ: (1)

The generation, manipulation, and storage of this tensor is a
major hurdle in many-body quantum simulations. In order
to overcome the computational difficulties inherent to such
high order tensors, it is common to introduce simplifying
approximations. For example, the Slater approximation [1]
has been applied to reduce the numerical expense of treat-
ing exchange terms involving the local, two-body Coulomb
potential. Unfortunately, such approximations can fail, as
exemplified by the often spectacular self-interaction errors
induced by local approximations to exchange interactions
[2]. Another canonical example is nuclear density func-
tional theory (DFT), where the need for computational
savings is the main driver for the continued usage of energy
density functionals (EDFs) derived from the zero-range
Skyrme-like pseudopotential [3], in spite of severe prob-
lems at both two- and three-body levels [4,5]. At the two-
body level, even EDFs derived from the finite-range Gogny
pseudopotential [6] (which avoids some of the limitations
of Skyrme functionals [7]) contain the same phenomeno-
logical density-dependent terms recently shown to cause
the collapse of all beyond-mean-field methods [8–11].

Removing density-dependences in the EDF, however,
would require introducing explicit finite-range three-body
forces, which pose a serious computational challenge
with current technology. Thus, it is clear that an improved
algorithm for faithful and direct treatment of arbitrary local
N-body potentials (with N � 2) would be highly desirable.
In this Letter, we show that an exact and separable

decomposition exists for any local potential in a finite basis
set built from polynomial functions in any desired parame-
trization of the physical space. This decomposition is
motivated by our recently introduced tensor hypercontrac-
tion (THC) method for electronic structure [12–14], which
provided a phenomenological approximation for the
electron repulsion integrals involving the Coulomb poten-
tial in nonpolynomial basis sets. The new exact tensor
hypercontraction (X-THC) representation reveals two
points of great importance for both electronic and nuclear
structure problems. First, THC approximation of the
Coulomb interaction is exact for basis sets which can be
expressed in polynomial form (and thus, the approximation
in electronic structure arises only because the basis func-
tions used were of nonpolynomial form). Second, THC
approximation is applicable not only to the two-body
Coulomb interaction but also to arbitrary local potentials
commonly encountered in nuclear structure (such as the
Coulomb, Gogny, local forms of realistic three-body
potentials, etc.). Since the nuclear problem is already
commonly formulated in terms of polynomial basis sets,
this implies that many problems in nuclear structure can
now be treated exactly with the lossless scaling reduction
afforded by the X-THC representation. The first of these
points may aid markedly in the search for more efficient
THC approximations in electronic structure, while the
second may yield unprecedented physical fidelity in
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nuclear structure computations (especially within the con-
text of nuclear DFT).

Below, we first demonstrate the key features of the
X-THC representation through the representative example
of a one-dimensional, two-body problem in Cartesian
coordinates using Hermite functions. The D-dimensional,
N-body generalization of X-THC is then presented.
Finally, we present an example implementation of
X-THC for the finite-range Gaussian potential in a basis
of Hermite functions, demonstrating that X-THC is both
lossless and markedly efficient in practice.

X-THC example.—Consider a one-dimensional (D ¼ 1)
problem in Cartesian coordinates, involving a finite basis
of Mþ 1 Hermite functions fc iðxÞg (labeled from 0 to M)

with a local two-body (N ¼ 2) potential V̂ � V̂ðx1; x2Þ.
The potential matrix elements are

hijjV̂ji0j0i �
ZZ

dx1dx2c iðx1Þc jðx2Þ
� V̂ðx1; x2Þc i0 ðx1Þc j0 ðx2Þ: (2)

The first stage in X-THC is to note that all ðMþ 1Þ2
products c iðx1Þc i0 ðx1Þ are exactly spanned by an ortho-
normal ‘‘auxiliary’’ basis f�Aðx1Þg consisting of 2Mþ 1
Hermite functions with a slightly modified spatial range,

�Aðx1Þ � c Að
ffiffiffi
2

p
x1Þ,

c iðx1Þc i0 ðx1Þ ¼
X
A

½ii0A��Aðx1Þ; (3)

where

½ii0A� �
Z
R
dx1c iðx1Þc i0 ðx1Þ�Aðx1Þ: (4)

This resolution is well known in the context of nuclear
physics [15–17], and is analogous to the popular density
fitting (DF) procedure of electronic structure theory
[18–20]. In this context, the decomposition is exact thanks
to the closure properties of the polynomial-based Hermite
functions. The integrals are now given as

hijjV̂ji0j0i ¼ X
AB

½ii0A�½jj0B�GAB; (5)

where

GAB �
ZZ

R2
dx1dx2�Aðx1Þ�Bðx2ÞV̂ðx1; x2Þ: (6)

Thus, the fourth-order integral tensor is expressed as a
product of second- and third-order tensors. Even though
we have compressed the fourth-order tensor, this represen-
tation still precludes scaling reduction in ‘‘exchangelike’’
terms. A canonical example of such a term is the pairing
field in Hartree-Fock-Bogoliubov theory,

�ij �
X
i0j0

hijjV̂ji0j0i�i0j0 ¼
X
ABi0j0

½ii0A�½jj0B�GAB�i0j0 ; (7)

where � is the pairing tensor. Despite the factorization,
computing this term still scales as OðM4Þ ¼ OðM2NDÞ.
The critical step in THC is to resolve the three-index

overlap integral ½ii0A� to ‘‘unpin’’ the indices i and i0 across
some additional linear-scaling index P. That is, we seek a
decomposition of the form ½ii0A� ¼ P

PX
P
i X

P
i0Y

P
A , where

the range of P is OðMÞ. Thanks to the choice of a poly-
nomial basis, the overlap integral is exactly integrated by a
2Mþ 1-node Gaussian quadrature (in this case, Gauss-
Hermite) defined by the nodes and weights fhxP; wPig
[21]. Therefore, the quadrature grid index provides a natu-
ral decomposition of the overlap integral

½ii0A� ¼ X
P

wPc iðxPÞc i0 ðxPÞ�AðxPÞ ¼
X
P

XP
i X

P
i0Y

P
A ; (8)

where XP
i � c iðxPÞ and YP

A � wP�AðxpÞ. This is reminis-

cent of the discrete variable representation (DVR) [22–25]
or pseudospectral [26] techniques of chemical physics.

Thus, defining the intermediate ZPQ ¼ P
ABY

P
AG

ABYQ
B ,

the full integral (2) is expressed as

hijjV̂ji0j0i ¼ X
PQ

XP
i X

Q
j Z

PQXP
i0X

Q
j0 : (9)

This X-THC representation of the integral tensor is the key
for the exact OðM3Þ ¼ OðMNDþ1Þ treatment of the pairing
term, via several intermediate summations, indicated here
by brackets for clarity,

�ij ¼
X

PQi0j0
XP
i X

Q
j Z

PQXP
i0X

Q
j0 �i0j0

¼ X
P

XP
i

"X
Q

XQ
j

"
ZPQ

"X
i0
XP
i0

"X
j0
XQ
j0�i0j0

####
:

(10)

Interpretation.—At first glance, the Z operator is a mere
mathematical intermediate, but there exists a much richer
interpretation: it is a quantized renormalization of the
coordinate-space representation of the potential operator

V̂. To see this, we first consider the continuous, renormal-
ized potential operator �V, defined as

�Vðx1; x2Þ �
X
AB

�Aðx1Þ�Bðx2ÞGAB: (11)

This operator is not equivalent to the original in physical

space, i.e., V̂ðx1; x2Þ � �Vðx1; x2Þ, yet the matrix elements

of both operators are identical, i.e., hijjV̂ji0j0i ¼ hijj �Vji0j0i.
The renormalized operator is simply the raw operator V̂
with all components outside of the finite product space
fc iðx1Þc i0 ðx1Þg , f�Aðx1Þg projected out in each coordi-
nate. This projection is serendipitous: the coordinate-space
integrand involving �V and the products of basis functions
are exactly resolved by the Gaussian quadrature for the

auxiliary basis, while the corresponding integrand for V̂ is
not exact under any finite quadrature due to the presence of
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‘‘alias’’ components outside of fc iðx1Þc i0 ðx1Þg. Applying
the Gaussian quadrature, we can quantize the renormalized
operator �V to produce the discrete operator ~V, adding
quadrature weights to account for the spatial contribution
of each point,

~Vðx1; x2Þ � wPwQ�ðx1 � xPÞ�ðx2 � xQÞ �Vðx1; x2Þ: (12)

As with �V, the matrix elements of ~V are identical to those

of V̂. Integrating ~V instead of V̂ naturally exposes the
X-THC factorization,

hijjV̂ji0j0i¼ hijj ~Vji0j0i
¼
ZZ

dx1dx2c iðx1Þc jðx2Þ ~Vðx1;x2Þc i0 ðx1Þc j0 ðx2Þ
¼X

PQ

XP
i X

Q
j Z

PQXP
i0X

Q
j0 : (13)

Here, the elements ZPQ are simply the quantized values of
the renormalized potential, with the weights rolled in, i.e.,
ZPQ ¼ wPwQ

�VðxP; xQÞ. An example involving a Gaussian

potential in Hermite functions is shown in Fig. 1. The
renormalized potential (right) clearly shows the effects of
projection from the raw potential (left). The locations of
the quantization to ZPQ (the positions at which �V can be
discretized in a lossless manner) are indicated with small
white x’s on the right.

This understanding of the Z operator reveals that while
X-THC is built from DF and DVR techniques, the resultant
supersedes both of the originals. In the context of local
potentials and polynomial basis sets, DF is always exact,
but does not provide separability of the i and i0 indices,
precluding scaling reductions. DVR techniques do provide
separability, but are only exact when an infinite quadrature
is used, for an arbitrary choice of local potential. By
contrast, X-THC’s particular merger of DF and DVR yields
a perfect dealiasing renormalization within a finite quad-
rature, providing a decomposition that is both exact and
separable for an arbitrary choice of local potential.

Generalized X-THC.—The generalization of the one-
dimensional, two-body, Hermite function example above
to N-body potentials in D dimensions and other choices
of polynomial direct-product bases is straightforward. For
X-THC to hold, the one-particle basis must be of the
D-dimensional direct-product polynomial type, i.e.,
c iðrÞ �

Q
D
�¼1 Pi�ðr�Þv�ðr�Þ. In each dimension �, Pi�

is a polynomial of up to degree i�, and v� is an arbitrary

weight function (analogous to the Gaussian term in the
Hermite functions above). Such basis sets are widely used
in atomic and nuclear many-body physics in various coor-
dinate systems. Use of a direct-product polynomial basis
automatically guarantees closure: for theM� þ 1 functions

in the �th dimension, the span hc i�ðr�Þc i0�ðr�Þi lies

wholly inside a (2M� þ 1)-function auxiliary basis, defined

by a set of polynomials orthogonal with respect to the
weight jv�ðr�Þj4. Additionally, all quadratic products of

auxiliary functions are exactly integrated by a (2M� þ 1)-

node Gaussian quadrature fhrP�
; wP�

igwhich can always be
found, e.g., by the Golub-Welsch algorithm [27].
These properties allow for the X-THC factorization

hi . . . njV̂ji0 . . . n0i ¼ X
P...W

XP
i � � �XW

n ZP...WXP
i0 � � �XW

n0 ; (14)

with each XP
i being the direct product of the D underlying

X
P�

i�
. ZP...W is the generalization of ZPQ to the case with

N-body auxiliary integrals GA...N .
Within the X-THC representation, the representative

generalization of the pairing term, �i...n �
hi . . . njV̂ji0 . . . n0i�i0...n0 , now scales as OðMNDþ1

� Þ, rather
than OðM2ND

� Þ, with no approximation or restriction on the

form of the local, finite-range potential V̂.
It is worth noting that common techniques to reduce the

cost of treating exchangelike terms involve approximating
the potential to be direct-product separable over Nw terms,
e.g., by approximating the Coulomb operator as a sum of
separable Gaussians [28,29]. This reduces the conventional
or DF cost of forming the generalized pairing tensor to
OðMNDþN

� Þ. X-THC can be applied to this approximate

separable potential, producing an OðMNDþ1
� Þ implementa-

tion. However, the separable form gives no particular scal-
ing advantage in the X-THC formalism, and can only
reduce the prefactor and memory requirements. A more
severe approximation is the invocation of a zero-range
potential. This is typically formulated as a DVR-type quad-
rature in coordinate space, which can be exact depending
on the form of the zero-range operator [30]. The asymptotic
scaling of a pairing term involving a zero-range potential is
OðMNDþ1

� Þ, due to the first or last transformation into or out

of the grid index. Remarkably, this is the same asymptotic
scaling as X-THC. The zero-range potential will generally
have a lower prefactor than X-THC (as there is only one
grid coordinate in the zero-range potential), but the asymp-
totic scalings are identical, and thus, the tractability limits
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FIG. 1 (color). Example of the X-THC process for a one-
dimensional, two-body Gaussian potential V̂ðx1; x2Þ ¼
expð�x212Þ in Hermite functions fc iðxÞg up to M ¼ 5. Left:

raw V̂ðx1; x2Þ. Right: renormalized �Vðx1; x2Þ. White x’s indicate
the collocation locations of the Gauss-Hermite quadrature to the
quantized operator ~Vðx1; x2Þ.
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should be comparable. A summary of the scaling reduc-
tions afforded with various factorization approaches and
local potentials is shown in Table I.

Practical demonstration.—To illustrate the numerical
equivalence and practical utility of the X-THC approach,
a hybrid MATLAB-C++ code was developed to produce
generalized pairing fields for D-dimensional, N-body
forces in Hermite functions. A complete description of
the code is presented in the Supplemental Material [31].

We have verified that the X-THC generalized pairing
fields are exact within machine precision (as expected
mathematically). Figure 2 shows the computational gains
which can be achieved from the X-THC factorization using
a representative example of N ¼ 2 and D ¼ 1, 2, 3. For a
general local potential, X-THC is several orders of magni-
tude faster than conventional approaches for the largestM�

studied here. When the potential is written in separable
form, the X-THC scaling advantage is less dramatic, but

X-THC becomes less costly for the largest M� used in

Figure 2. The X-THC approach allows one to retain the
general local potential and calculate the exact pairing
tensor in similar (or even less) computational effort as
with an approximate separable potential.
Summary and outlook.—In this Letter, we have demon-

strated that an exactly quantized renormalization of any
local, finite-range N-body potential exists in any situation
where the primary basis set may be composed of
polynomial-based functions. This X-THC representation
provides for substantial computational scaling reduction of
contractions involving the local potential integral tensor,
for instance by reducing the formation of a representative
generalization of the pairing tensor from OðM2ND

� Þ to

OðMNDþ1
� Þ.

In electronic structure, the concept of X-THC helps to
codify and rationalize our existing least-squares tensor
hypercontraction (LS-THC) approximation for nonpolyno-
mial basis sets [13]. The least squares procedure intro-
duced in that work actually performs an implicit
renormalization of the potential. Since the basis sets used
in our previous applications of LS-THC were not direct
products of polynomials (but rather atom-centered
Gaussian functions), the decomposition was necessarily
an approximation. As the X-THC limit is approached, the
fidelity of the approximation will depend on both the basis
set resemblance to a set of polynomial-based functions and
the efficiency of the quadrature. The physical picture pro-
vided by X-THC’s explicit renormalization process will
almost certainly aid in the search for enhanced approxi-
mate THC recipes for nonpolynomial basis sets.
In nuclear structure, the potential applications for

X-THC are immediate and substantial. A crucial finding
of this Letter is that the formal scaling of operations
involving arbitrary local potential operators is identical to
that of zero-range operators, without any loss in accuracy.
This implies that the finite-range two-body Gogny poten-
tials of nuclear DFT can immediately be applied with the
same computational complexity as the more approximate
zero-range Skyrme potentials. Tractability gains should be
even more marked for three-body potentials, paving
the way for Hamiltonian-based nuclear energy densities
derived from effective, local, finite-range, density-
independent, two- and three-nucleon pseudopotentials,
which, by construction, would be free of the current arti-
facts of nuclear DFT.
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TABLE I. Computational scalings for the pairing term of an
arbitrary local potential in several approaches.M� is the order of

the polynomial basis in the �th degree of freedom, and the
potential is N body in D dimensions. For simplicity, we consider
the isotropic case where M� is the same in all dimensions in this

comparison. Nw is the number of terms retained in a separable
approximation to the potential.

Approach General local Separable local Zero range

Conventional OðM2ND
� Þ OðNwM

NDþN
� Þ OðMNDþ1

� Þ
X-THC OðMNDþ1

� Þ OðNwM
NDþ1
� Þ OðMNDþ1

� Þ
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FIG. 2 (color). Wall times for pairing tensor formation as a
function of M� for N ¼ 2 (log-log scale). Nw ¼ 8 for the

separable potential.
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