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The nuclear equation of state (EOS) is explored with the constrained Hartree-Fock-Bogoliubov

approach for self-conjugate nuclei. It is found that beyond a certain low, more or less universal density,

those nuclei spontaneously cluster into A=4 � particles with A the nucleon number. The energy at the

threshold density increases linearly with the number of � particles as does the experimental threshold

energy. Taking off the spurious c.m. energy of each � particle almost gives agreement between theory and

experiment. The implications of these results with respect to � clustering and the nuclear EOS at low

density are discussed.
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Introduction.—Cluster phenomena, in particular, � par-
ticle clustering in lighter nuclei, is presently a very active
field of research. It is highlighted by the famous Hoyle (0þ2 )
state in 12C at 7.65 MeV. This state, primordial for the 12C
production in the Universe and, thus, for life, has long been
believed to be in good approximation formed out of a
weakly interacting gas of almost free � particles [1–4].
Since these � particles are all in relative S states, one can
qualify this state as an� particle condensate [4], keeping in
mind the limitations of this notion for finite systems with
small numbers of particles. The research concerning this
state has experienced a very vivid revival since about 10
years ago when the hypothesis of the possible existence of
� condensates in nuclei was formulated for the first time
[4]. The investigations are now extending to heavier self-
conjugate nuclei. On the forefront is 16O, where theoretical
investigations predict that the sixth 0þ state at 15.1 MeV is
an analog of the Hoyle state but with four � particles
instead of three [5]. Similarities between the three � and
four � cases are, indeed, being found experimentally [6].
The particularity of those � particle condensate states is
that they are spatially extended [7], i.e., at a low average
density of �� �eq=3� �eq=4, with �eq the average den-

sity at equilibrium of the nucleus. In this sense the �
condensate states can be considered as a continuation of
the structure of 8Bewhich consists of twowell-identifiable,
separated, weakly interacting � particles with average
density in the just-mentioned range [8]. On the other
hand, it is also well known that low density nuclear matter
is unstable against cluster formation, mainly � particles
[9,10]. Theoretical predictions give a critical temperature
for macroscopic� condensation as high as T�

c � 7–8 MeV
at low densities [11]. From this fact, it can be inferred that
the Hoyle state and possible heavier Hoyle analog states
are precursor states of a macroscopic � condensate phase,

very much in analogy with neutron pairing in finite nuclei
being a precursor to neutron superfluidity in neutron stars.
The description of � gas states in heavier n� nuclei

naturally becomes more and more difficult using, e.g., �
condensate wave functions as they are given in [12] by the
THSRwave function, coined according to the initials of the
authors in [4], which is based on a fully fermionic descrip-
tion. On the other hand, certain 3D Hartree-Fock (HF) and
Hartree-Fock-Bogoliubov (HFB) calculations of nuclei
have recently shown that these mean field approaches
can manifest cluster formation [13–15]; they are less
affected by size limitations. In this work, we concentrate
within the HFB framework, using the Gogny D1S interac-
tion, on constraining the radius of self-conjugate nuclei to
larger and larger values, i.e., to lower and lower nuclear
densities. In this way, we prevent a transition to strong
deformation which would favor clusterization into
binaries. Thus, expanding the nucleus, at a critical low
density and because of the 3D nature of the code, the
system will spontaneously cluster into � particles, even-
tually also into a heavier compact core with an � gas
around it and other cluster formations. Those � particles
do not, of course, form a condensate but rather build a
lattice. This hinges on the fact that the �’s do not have the
possibility to move freely with their c.m. coordinate in
these HF or HFB calculations. The advantage of the
mean field approach is that it can produce many �’s in
various configurations, still being entirely microscopic. So,
qualitatively, the transition of an expanding nucleus pass-
ing from the homogeneous density distribution of a Fermi
gas (HF) to clusterization can be studied within the mean
field approach giving precious insights into the clusteriza-
tion phenomenon in general and into the formation of �
gas phases in particular. For example, as we will show, the
energy of the system as a function of the radius first rises
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from its equilibrium position going over a barrier and
entering the cluster phase at around a density � ¼ �eq=3.

Among others, this feature is of quite some interest, as will
be discussed below.

Formalism and results.—Since the constrained HFB
theory is extensively explained in the literature [16–19],
here we give only the absolute minimum of formalism. We
minimize the HFB ground state energy using the Gogny
D1S [19] interaction in constraining the radius of the
nucleus, that is,

EHFB ¼ hHFBjH � �r2jHFBi=hHFBjHFBi; (1)

where r is the radius. � is obtained in such way that
hHFBjr2jHFBi ¼ r20. Therefore, choosing values for r0<
or >rg:s, where rg:s: is the radius of the ground state,

compresses or dilutes the nucleus. In the following, we
treat all nuclei in spherical geometry, even though HFB
may sometimes yield a deformed solution at the equilib-
rium position. Since we are interested in the low density
(large radius) regime, the precise configuration at the
absolute minimum does not matter. It should, however, be
stressed that our 3D numerical code allows us to take on any
cluster configuration, if this is energetically favorable, but
on average the system stays spherical. For our study, we
consider self-conjugate N ¼ Z nuclei up to 40Ca [20].

Let us first show in some detail the various � cluster
configurations obtained from our constrained HFB calcu-
lation (for brevity, we will not show in this work the well-
known triangle configuration of 12C; see, e.g., [21,22]). In
Fig. 1, we present the 16O case. We see that a tetrahedron of
four � particles is formed. Actually, the transition to the
cluster state is quite abrupt. In Fig. 2 we show the 24Mg

case. The 20Ne case is quite similar, only in the shaded
plane three �’s are arranged in an equilateral triangle
instead of four at the corners of a square. In Fig. 3 we
display 32S and in Fig. 4 40Ca. Going to the heavier
systems, it becomes more and more difficult to disrupt
the system into � particles only. For example, we show a
four 8Be configuration for 32S and a 16O plus six � case for
40Ca. Many more cluster configurations can be obtained
progressing, e.g., in smaller steps with the radius incre-
ment, but because of space limitations we cannot present
this here. Let us also mention that we got an excited 36Ar
composed of three 12C nuclei in a bent linear chain con-
figuration. Also 48Cr clustering into four 12C has been
found, and many configurations more.
Let us now present the equation of state (EOS) for the

energy per particle as a function of density. Expanding
(or compressing) a finite spherical nucleus does not, of
course, yield the usual equation of state as in infinite
nuclear matter, since, in addition to the bulk, the surface
and Coulomb energies together with the quantal shell
corrections are involved. Therefore, this equation of state
which we want to call EOS-A slightly differs from nucleus
to nucleus. Even for a given nucleus, in the low density
region where clusters are formed, EOS-A may fluctuate,
since in this region the energy surface has many different
valleys leading to different cluster formations not very
much different in energy. In which configuration the cal-
culation gets trapped depends, e.g., on the step size of the
expansion and other ingredients. It is important to realize
that, once the � particles are formed, in HFB they contain
their own spurious c.m. energy which should be elimi-
nated. Since presently no method is available to achieve
this in a microscopic way, we follow a heuristic procedure.
We perform a HFB calculation of 8Be and constrain the
distance between the two forming �’s so that they are very
well separated. About 14MeVare then missing to get twice

FIG. 1 (color online). Total energy of 16O as a function of the
radius scaled with respect to the one of the ground state rg:s:. At

r=rg:s: ¼ �1:8, we see that a tetrahedron of four � particles is

formed. No c.m. correction for individual �’s is applied here.
The arrow indicates to which r=rg:s: value the � configuration

corresponds.

FIG. 2 (color online). Same as Fig. 1 but for 24Mg with six �’s.
The shaded area only serves to show the three dimensionality of
the � arrangement.
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the binding energy of a single � particle in the asymptotic
limit, as it should be. We attribute this lack of binding to
spurious c.m. motion of each � not being correctly treated.
Of course, the total kinetic energy is subtracted from the
Hamiltonian in all our calculations. So for 8Be we have
�7 MeV extra binding per � particle. We choose the
hypothesis that this number stays about the same, even in
cases with more � particles. This correction to take off
7 MeV for each � particle is switched on adiabatically
from the point of the first clear appearance of the � particle
structure which happens around a density �=�eq � 1=3. In

order to get a global view, we show in Fig. 5 the different
EOS-A obtained in this way for various n� � nuclei
superposed. With this, we want to put into evidence the
general behavior of the nuclear equation of state at low
densities when it goes over into an� particle configuration.
As can be seen from Fig. 5, there is a clear tendency that

the EOS-A goes as a function of decreasing density over a
maximum before reaching the zero density limit where
the � particles are infinitely far apart and, therefore, the
EOS-A reaches the value of an isolated � particle, i.e.,
�7:5 MeV, which is our theoretical value. Evidently, the
numerical HFB code cannot handle configurations with �
particles very distant from one another. Therefore, we
stopped the calculation, once the � particles are clearly
separated, which happens around �� �eq=5 (see also the

detailed figures noted above). It may seem intriguing that
the EOS-A bends down at low densities even for 32S and
40Ca where the energies displayed in Figs. 3 and 4 still
show a slight increase in energy. It should, however, be
recalled that the energies shown in Figs. 1–4 are uncor-
rected for spurious � particle c.m. motion. Once this
correction is applied, the slight upward trend is converted
into a downward trend. In Fig. 5, we show as an artist view
lines extrapolating down to zero density just to guide the
eye. The existence of a maximum in the nuclear equation
of state containing a gas of � particles on the low density
side and a Fermi gas (HF) on the higher density side is not
evident. It would mean that the � phase is in a metastable
state. The transition to the Fermi gas configuration will be
strongly different from the scenario when there is no
barrier. This may eventually be a question of importance
in compact stars where � particle phases may exist in the
density-temperature space. This question has been inves-
tigated in recent years by several authors, see [23–25], but
the existence of a barrier and its height has been discussed,
to the best of our knowledge, only in a relatively older
paper on nuclear matter by Takemoto et al. [10], with
similar results to ours. The present investigation seems to
indicate the existence of a barrier about 2.5 MeV high, but
certainly our procedure is very crude and more investiga-
tions have to be performed before a definite conclusion can

FIG. 4 (color online). Same as Fig. 1 but for 40Ca with ten �’s.
Also, configurations with a 16O surrounded by six �’s are shown.

FIG. 3 (color online). Same as Fig. 1 but for 32S with eight �’s.
Also, configurations with four 8Be and a 16O surrounded by four
�’s are shown.

FIG. 5 (color online). Equation of state for a choice of self-
conjugate nuclei (EOS-A) as a function of average density scaled
by the one at equilibrium; see text for detailed definition.
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be made. It should, however, be observed that at �=�eq �
1=3, where the �’s start to appear, the EOS-A are already
well above the asymptotic limit of �7:5 MeV, so that in
any case the systems have to go over a substantial barrier.
This is the important point. The existence and height of the
barrier are, of course, of great importance for the coales-
cence process of � particles into heavier nuclei in such star
scenarios.

Defining � ¼ �eq=3 ðr=rg:s: � 1:45Þ as the theoretical

threshold for � formation, we display in Fig. 6 the energy
progression with the number n of � particles at that den-
sity. It is seen that this progression is about linear with n,
increasing by �16 MeV per � particle. Taking off 7 MeV
of spurious c.m. energy for each � particle strongly
improves the agreement with experiment; see the broken
line in Fig. 6. The experimental threshold energies follow
rather well a 7.6 MeV increase per � particle. It is, how-
ever, clear that this procedure can only yield a very rough
estimate of the real situation. It is encouraging that the
overall picture seems to be quite reasonable. Since it is
clear by now that the � particles form a quantum gas rather
than a crystal, see [26] where a Brink-type, i.e., crystal-
like, approach is put into competition with the THSR
approach with the latter the clear winner, it will be impor-
tant in the future to find less heuristic ways to take off the
spurious c.m. energies from the clusters, once they are
formed in the mean field approach.

Summary and discussion.—In this work, for the first
time, a rather systematic study for quite a number of self-
conjugate nuclei is presented within mean field theory
(HFB) concerning the formation of � particles when the
nuclei are expanding, that is, at low density. Here, we
adopted a static approach revealing rich scenarios of �
cluster configurations and other heavier clusters, such as
8Be and 12C. However, for the lighter nuclei � clusters are

largely dominant. The mean field approach has a great
advantage over other cluster models to be entirely micro-
scopic, employing a realistic energy density functional,
and to be able to describe the formation of quite a large
number of � particles and eventually other clusters. It can
cover within the same approach all density regions going in
a continuous way from stable nuclei to highly excited ones
at low density where the clusters form. It is found in this
work that by expanding an n-� nucleus the corresponding
EOS-A goes over a maximum before reaching the asymp-
totic very low density limit of the � gas. This may be of
importance in stabilizing an � phase. In principle there is
no restriction for our 3D mean field approach to produce
any kind of shapes and clusters in which the systems want
to go. We also have checked that a single � particle is well
described in HF with the Gogny force. Indeed, we have
demonstrated in this work that there can exist a great
variety of rather surprising and unexpected cluster configu-
rations when the nucleus is expanding.
The disadvantage of the mean field approach is that it

fixes the clusters to certain spatial positions as, e.g., on the
corners of a tetrahedron in the case of 16O, whereas it is
predicted in recent work with the so-called THSR wave
function that � particles rather form a (degenerate quan-
tum) gas than a crystal [1–4,27]. To overcome this draw-
back, we applied in this work a purely heuristic procedure
in eliminating ‘‘by hand’’ the spurious c.m. energy of each
� particle. It is shown that in this way the theoretical
threshold energies for n �’s get rather close to the experi-
mental values; see Fig. 2. Let us mention that other
approaches have also been used before for the description
of cluster formation [21,22]. This was mostly done within
the antisymmetrized molecular dynamics [28] or fermionic
molecular dynamics [21] approaches. We are not aware of
any work that uses HF or HFB wave functions in a system-
atic study for clustering at low densities. The correct micro-
scopic treatment of the spurious c.m. motion of clusters
formed in a mean field approach remains an important task
of nuclear many body physics for the future. Our work
opens a variety of further investigations. Most interesting is
the cluster formation as a function of neutron excess.
Repeating our study with relativistic mean field may also
be interesting, since it has recently been shown that rela-
tivistic mean field favors cluster formation [15]. We believe
that the rich cluster scenarios found in this work are very
inspiring, and we hope that this will trigger more experi-
mental and theoretical work along this line in the future.
P. S. is very grateful to Y. Funaki, H. Horiuchi, G.

Röpke, A. Tohsaki, and T. Yamada for a very fruitful and
long-standing collaboration on � clustering in nuclear
systems where many ideas developed which are alluded
to in this work. More recent collaboration and discussions
with Bo Zhou, Zhongzhou Ren, and Chang Xu have also
been very helpful. Exchanges of ideas with J.-P. Ebran, E.
Khan, and D. Vretenar are appreciated.

FIG. 6 (color online). Threshold energies as a function of the
number n of � particles. Triangles: Experimental values; dots:
values from HFB calculations, see text for precise definition; full
line: best straight line fit to HFB results; broken line: � particle
c.m. corrected HFB values.
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Rev. Lett. 87, 192501 (2001).
[5] Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck,
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