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We study the structure of two-body s-wave bound states as well as resonances in the threshold energy

region. We focus on the single-channel scattering where the scattering length and the effective range are

given by real numbers. It is shown that, in the energy region where the effective range expansion is valid,

the properties of resonances are constrained only by the position of the pole. We find that the

compositeness defined through the analytic continuation of the field renormalization constant is purely

imaginary and normalized for resonances. We discuss the interpretation of this quantity by examining the

structure of the hadron resonance �cð2595Þ in the ��c scattering. We show that the �cð2595Þ resonance
requires an unnaturally large effective range and hence it is not likely a ��c molecule.
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The appearance of resonances is a common phenome-
non in various fields in physics. Several types of unstable
particles are generated by different mechanisms in particle,
nuclear, and condensed matter physics [1]. In the strong
interaction sector governed by quantum chromodynamics,
hundreds of hadrons have been experimentally observed,
most of which are unstable against the strong decays [2]. It
is therefore important to study the structure of hadron
resonances, in order to understand the nonperturbative
dynamics of the strong interaction.

Although the typical behavior of resonance phenomena
is explained in the textbooks of quantum mechanics, the
theoretical foundation of the description of resonances has
not been well established [3]. For instance, the field renor-
malization constant Z has been used to study the structure
of two-body bound states [4]. The quantity 1� Z repre-
sents the compositeness of the bound state, which is well
defined and normalized for stable bound states.
Generalization of the compositeness to resonances has
been formulated, for instance, by using the integration of
the spectral density [5,6]. Another approach is to define the
compositeness as the analytic continuation of the field
renormalization constant of the resonance pole [7,8].
This approach is a straightforward generalization of the
bound state case, which is free from the background (non-
resonant) contribution of the scattering. On the other hand,
it provides a complex and unnormalized number for com-
positeness whose interpretation is not clear.

In this Letter, we consider this problem by employing
the effective range expansion of an s-wave scattering,
which is a model-independent expression of the amplitude
as far as the small momentum region is concerned.
Because the effective range expansion specifies the ampli-
tude by two threshold quantities, the properties of near-
threshold resonances are highly constrained. This enables
us to extract the general feature of the near-threshold
resonances.

Let us consider a single-channel scattering in the effec-
tive range expansion. Truncating the expansion of k cot�
up to k2, we write the scattering amplitude with the mo-
mentum k as

fðkÞ ¼
�
1

a
� kiþ re

2
k2
��1

; (1)

where a is the scattering length and re is the effective range
[9]. The truncation should be valid in the small k region,
namely, the near-threshold kinematics. For a given set of
(a, re), the amplitude (1) has two poles at

k� ¼ i

re
� 1

re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2re

a
� 1

s
: (2)

We call k� the ‘‘primary pole,’’ which is closer to the
physical scattering axis (Im k ¼ 0, Re k � 0). The other
pole kþ is called the conjugate pole. In the following, we
consider the lowest energy threshold without any open
channels below, so that a and re are real [10]. The positions
and properties of these poles are classified in Ref. [11].
As is well known, for a positive effective range re > 0,
the primary pole represents a bound (virtual) state for
the negative (positive) scattering length. The allowed
region for the bound state is constrained by the condition
�2re < a because of the causality. Although Eq. (1)
always has two poles, only those that appear in the small
k region are physically relevant.
For a negative effective range re < 0, the primary pole

can represent a resonance state. Naively, a simple attractive
potential does not generate an s-wave resonance, because
there is no centrifugal barrier. This is understood because
the simple attraction provides a positive effective range. A
negative effective range can be realized, for instance, by
energy dependent interactions, by nonlocal interactions,
and by Feshbach resonances [12].
With a fixed re < 0, we plot the trajectories of the poles

(2) in the complex k plane by varying the inverse scattering
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length 1=a from�1 toþ1 in Fig. 1(a). The primary pole
moves from the bound state region to the virtual state
region, and merges with the conjugate pole at the double
root k� ¼ kþ ¼ i=re. The pole then moves off the imagi-
nary k axis while acquiring a real part, and eventually turns
into a resonance. We note that the double root should lie in
the negative region of the imaginary k axis, in order to have
a resonance (k� in the fourth quadrant). The properties of
the poles are summarized in Table I.

The scattering length and the effective range can be
expressed by the pole positions as

a ¼ kþ þ k�

ikþk�
; re ¼ 2i

kþ þ k�
: (3)

In the present case, because kþ þ k� (kþk�) is purely
imaginary (real), both re and a are real numbers. The
scattering amplitude is then written as fðkÞ ¼ ðkþ þ
k�Þ=½iðk� kþÞðk� k�Þ� so the residue of the pole is
obtained as

lim
k!k�

ðk� k�ÞfðkÞ ¼ kþ þ k�

iðk� � k�Þ : (4)

Again, this is a real number. For the bound and virtual
states, the residue of the primary pole k� is determined by
the position of the conjugate pole kþ and vice versa.
In the case of the resonances, kþ ¼ �ðk�Þ�, so the residue
is solely determined by the position of the pole. Note
that in general the residue of the resonance pole is a
complex number, which is independent of the pole
position. Equation (4) suggests that the properties of the

near-threshold resonances are constrained through the
threshold quantities.
Next we turn to the compositeness. For a weakly

bound state, the scattering length and the effective range
are related to the field renormalization constant as [4]
a ¼ �2ð1� ZÞR=ð2� ZÞ and re ¼ �ZR=ð1� ZÞ with

R ¼ ð2�BÞ�1=2, the reduced mass �, and the binding
energy B. The field renormalization constant Z is defined
as the overlap of the physical bound state with the elemen-
tary contribution other than the scattering state. By elim-
inating R, Z is given by

Z ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

1þ a=ð2reÞ

s
¼ 2k�

k� � kþ
; (5)

where we choose the sign of the square root so that the
expression matches with the normalization 0< Z< 1 for
the bound states. The quantity X � 1� Z is called com-
positeness, which measures the two-body molecule com-
ponent in the bound state.
Now we consider the 1=a dependence of Z with a fixed

re < 0 [Fig. 1(b)]. It is instructive to consider X ¼ 1� Z,
instead of Z itself. The compositeness X is real and positive
for 1=a <�2=re. In addition, for the bound states (nega-
tive 1=a < 0), the compositeness is always normalized as
0<X < 1. We obtain a pure composite state X ¼ 1 in the
unitary limit 1=a ¼ 0. Beyond the unitary limit, the bound
state turns into a virtual state and the compositeness
exceeds unity. At the double root 1=a ¼ �2=re,X diverges
and for 1=a >�2=re, X becomes purely imaginary.
Interestingly, however, its magnitude is normalized within
0< jXj< 1 for the resonance case�1=re < 1=a. Here we
define a new quantity

�X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 1

1þ a=ð2reÞ

s
;

which is real and positive for 1=a >�2=re, and properly
normalized for resonances (0< �X < 1). The normalization
is given at �X ¼ 1 at k� ¼ �1=re þ i=re with 1=a ¼
�1=re. The corresponding eigenenergy is

E� ¼ ðk�Þ2
2�

¼ � i

�r2e
: (6)

This is a special state whose mass is located at the two-
body threshold and the width is determined solely by the
effective range; the width is small (large) for a large (small)
jrej. �X ¼ 0 is realized when Re k� ! þ1 (1=a ! þ1).

(a) (b)

FIG. 1 (color online). Trajectories of the pole positions k� and
kþ (a), and the field renormalization constant Z (b) increasing
the inverse scattering length 1=a for a fixed negative effective
range re < 0. Inverted triangles, squares, circles, crosses, and
triangles correspond to 1=a ¼ �1, 0, �2=re, �1=re, and þ1,
respectively. Solid (dashed) line with filled (empty) symbols
stands for k� (kþ).

TABLE I. Classification of the properties of the poles in the effective range expansion for re < 0.

Inverse scattering length 1=a < 0 0< 1=a <�2=re �2=re < 1=a <�1=re �1=re < 1=a

Primary pole Bound state Virtual state Virtual state with width Resonance

Conjugate pole Virtual state Virtual state Anti-virtual state with width Anti-resonance

Compositeness 0<X < 1 1<X 1< �X 0< �X < 1
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The effective range expansion, however, breaks down
before we take this limit.

We can summarize the situation as follows. In the effec-
tive range approximation, we have two parameters, ða; reÞ.
For a given position of the bound state, the pair ða; reÞ is
related to the position of the bound state pole and its
residue (4). As shown in Ref. [4], the compositeness
1� Z can be calculated by these quantities. Furthermore,
ða; reÞ also determines the position of the conjugate pole
(2). As discussed in Ref. [5], the distance between k� and
kþ is related to the compositeness, in accord with the ‘‘pole
counting’’ argument [13]. If two poles appear close to each
other [kþ � k� in Eq. (5)], Z� 1 and the bound state is
considered to be an elementary contribution other than the
two-body state. In this case, kþ can be regarded as the
shadow pole [14].

For the resonances, the field renormalization constant Z
is calculated by the position of the pole and the residue
[7,8]. In general, the residue of the pole is independent of
its position. However, the residue of a near-threshold reso-
nance is related to its pole position through the effective
range parameters, so Z is determined only by the pole
position. This is a universal feature of the near-threshold
resonances.

To examine the validity of the effective range expansion,
we consider a single-channel model for the s-wave pion-
baryon scattering based on chiral dynamics [11,15]. The
scattering amplitude with the total energy W is given by
TðWÞ ¼ ½VðWÞ�1 �GðW; dÞ��1 where G is the two-body
loop function with the subtraction constant d which speci-
fies the finite part. The low-energy interaction VðWÞ is
model-independently determined by the chiral low energy
theorem [16] as

VðWÞ ¼ � C

2f2
ðW �MÞMþ EðWÞ

2M
; (7)

where EðWÞ ¼ ðW2 �m2 þM2Þ=2W, f ¼ 92:4 MeV is
the pion decay constant. For the later application to
�cð2595Þ, we consider the ��c scattering and adopt the
baryon mass M ¼ 2453:54 MeV and the pion mass
m ¼ 138:04 MeV. The low energy theorem determines
the group theoretical factor as C ¼ 4 for the isospin singlet
channel, but we vary it to examine its dependence.

For a given interaction strength C and the subtraction
constant d, we calculate the pole position zR in the complex
energy plane and (a, re) at the threshold. In Fig. 2, we plot
by solid lines the trajectories of the pole position zR with
respect to the variation of d. The interaction strength is
fixed at C ¼ 4 (a) and C ¼ 1 (b).

As shown in Ref. [11], the effective range is stable
against the change of the subtraction constant d, while
the scattering length strongly depends on d. This is because
the scattering length (effective range) is determined by the
strength (derivative) of the inverse amplitude at the thresh-
old. The change of the subtraction constant effectively

modifies the strength of the inverse amplitude [17], while
the energy dependence is not very much affected. In fact,
the variation of the effective ranges is within�0:2 fm in all
cases in Fig. 2, while the scattering length changes its sign.
Thus, the trajectories in Fig. 2 effectively correspond to the
scattering length dependence of the pole position with a
fixed effective range. The central values are re ��4:8 fm
and �� 18:3 fm for C ¼ 4 and C ¼ 1, respectively.
We show the pole trajectories calculated from (a, re)

with Eq. (2) by dashed lines in Fig. 2. The triangles are
plotted at a ¼ �1, �2, and �10 fm. The different posi-
tions of the symbols, as well as the deviation of the dashed
and solid lines indicate the validity of the effective range
approximation. We thus confirm that the effective range
expansion works well in the threshold energy
region, especially when the magnitude of the effective
range is large. Figure 2(a) shows that the expansion is
also applicable to the state whose excitation energy is
smaller than its width, as far as the state is located close
to the threshold.
It is worth noting that the residue of the pole in the

amplitude with the normalization (7) is given by

g2 ¼ � 2�ðkþ þ k�Þ2
�2MiðE� � EþÞ ½ðE

� þMþmÞk��; (8)
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FIG. 2 (color online). Trajectories of the pole position zR with
the interaction strength C ¼ 4 (a) and C ¼ 1 (b). Solid (dashed)
lines with empty (filled) triangles represent the exact pole
positions [pole positions calculated from (a, re)]. Symbols are
plotted at a ¼ �1, �2, and �10 fm. Cross and circle in (a)
represent the position of the physical �cð2595Þ and that of the
natural renormalization scheme.
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where E� ¼ ðk�Þ2=ð2�Þ. The first factor is real, while the
second one is complex. Nevertheless, the residue is
uniquely determined by the pole position.

We now consider �cð2595Þ, a negative parity excited
state of the charmed baryon. In the second row of Table II,
we show the central values of the mass and width
of �cð2595Þ from the Particle Data Group [2]. In view of
Fig. 2, the pole position is well within the applicability of
the effective range expansion, so we calculate the corre-
sponding scattering length and the effective range by
Eq. (3). Using Eq. (5) we obtain the field renormalization
constant Z ¼ 1� 0:608i and �X ¼ 0:608. To interpret this
quantity, we examine the structure of �cð2595Þ.

The natural renormalization scheme was introduced in
Ref. [17] to exclude possible Castillejo-Dalitz-Dyson
(CDD) pole contributions, which stem from the contribu-
tions other than the considered model space [18].
Resonances generated in this scheme are regarded as
hadronic molecule states. The subtraction constant is
determined in this scheme as dnatural ¼ �2:88 at � ¼
630 MeV, and we set the coupling strengthC ¼ 4 to match
with the low energy theorem. The pole positions are shown
in Fig. 2(a) and Table II. Because the pole in the natural
renormalization scheme is far from the physical one, we
find that the substantial CDD pole contribution is required
in the structure of �cð2595Þ.

This can also be confirmed by the scattering length and
effective range. We show the threshold variables in the
natural scheme in Table II. We find large deviation from the
corresponding physical �cð2595Þ, which again indicates
substantial CDD pole contribution. In addition, the effec-
tive range �19:5 fm deduced from the physical pole posi-
tion is an order of magnitude larger than the typical scale of
the hadronic interaction of several fm. Thus, the effective
range is at odds with the interpretation of a hadronic
molecule. In view of these results, we conclude that
the �cð2595Þ resonance is not dynamically generated by
the chiral low energy interaction in the ��c channel. The
origin of the CDD pole contribution may be a three-quark
state, bound states of other channels such as ���

c, DN,
���c and their mixtures.

In this analysis, we have assumed isospin symmetry
for particle masses, and ignored the decay width of the
�c baryon ��c

� 2 MeV and the effect of the ���
c

channel which locates about 65 MeV above. The genuine
���c three-body component is not included. In a more

quantitative discussion, these effects should be taken into
account. Nevertheless, the large deviation in Table II
clearly disfavors the ��c molecule interpretation of the
�cð2595Þ resonance.
Now we consider the interpretation of �X. For resonances

(1=a >�2=re), we have Z ¼ 1� i �X. Since the field re-
normalization constant indicates how the bare propagator
is modified from unity [7], we also expect that �X represents
the deviation from the elementary state Z ¼ 1. However,
�X ¼ 0 is defined at Re k� ! þ1, which is far beyond the
applicability of the effective range expansion. On the other
hand, we have discussed the special case where the real
part of the resonance coincides with the threshold energy
and the imaginary part is determined by the effective range.
This resonance produces �X ¼ 1 and it is well within the
applicability of the effective range expansion. We therefore
consider that �X measures the deviation from this particular
state.
In summary, we have studied the properties of the near-

threshold resonances, analyzing the�cð2595Þ resonance as
an example. We show that the effective range expansion is
very useful to extract the properties of these resonances. As
in the case of the bound states [4], the properties of the near-
threshold resonances can be related to the observable quan-
tities. We find that the pole position of�cð2595Þ indicates a
much larger effective range than the typical hadronic length
scale, so the interpretation as a��cmolecule is not favored.
Since the effective range expansion itself is a general
expression for low energy scattering, the present framework
can be applied to study the structure of any near-threshold
resonances, such as 8Be in the �� scattering.
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