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We propose a new method to compute glueball masses in finite temperature lattice gauge theory which

at low temperature is fully compatible with the known zero temperature results and as the temperature

increases leads to a glueball spectrum which vanishes at the deconfinement transition. We show that this

definition is consistent with the Isgur-Paton model and with the expected contribution of the glueball

spectrum to various thermodynamic quantities at finite temperature. We test our proposal with a set of

high precision numerical simulations in the 3D gauge Ising model and find a good agreement with our

predictions.
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While the physics of glueballs in pure lattice gauge
theory (LGT) at zero temperature is by now rather well
understood [1–3] a similar level of understanding for the
finite temperature behavior of the glueball spectrum is still
lacking. The standard method used to compute finite T
glueball masses [4,5] is to measure the correlator of the
glueball operator (for instance a simple plaquette, if one is
interested in the 0þþ glueball). along the compactified
time direction of length 1=T. The glueball spectrum
obtained in this way turns out to be almost constant as
the temperature increases and seems not to be affected by
the deconfinement transition: glueball masses were mea-
sured even deeply in the deconfined phase showing values
similar to the zero temperature ones (or slightly smaller,
depending on the procedure adopted in the calculation)
[4,5]. However, this picture is unsatisfactory for at least
two reasons.

First, one of the most successful phenomenological
descriptions of glueballs is the well known Isgur-Paton
model [6]. This model, and its recent generalizations [7],
is able not only to predict the general structure of the
spectrum (like, for instance, the fact that the mass of the
2þþ state is lower than the mass of the 1þþ) but also its fine
details and shows a remarkable agreement with the lattice
estimates. In this model, glueballs are considered as ‘‘rings
of glue,’’ kept together by the same string tension which
appears in the interquark potential and, thus, should vanish
at the deconfinement point when the string tension van-
ishes. If we trust this picture, then it could also be used to
predict the T dependence of the glueball spectrum for low
temperatures. In fact, the Isgur Paton model predicts values
of the zero temperature glueball masses miðT ¼ 0Þ as

adimensional ratios mið0Þ=
ffiffiffiffiffiffiffiffiffiffi

�ð0Þp

[where �ð0Þ is the zero
temperature string tension]. In a finite temperature setting,
we expect the same ratios, but with �ð0Þ substituted by the
finite temperature string tension �ðTÞ, i.e.,

miðTÞ ¼ mið0Þ
ffiffiffiffiffiffiffiffiffiffi

�ð0Þp

ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞ
p

; (1)

which is a decreasing function of T. This expectation is in
complete disagreement with the almost constant T depen-
dence proposed in [4,5] for this range of temperatures.
Second, recently, very precise estimates of various ther-

modynamic quantities have been obtained both below and
above Tc. in pure lattice gauge theories in d ¼ 3þ 1 [8,9]
and in d ¼ 2þ 1 [10,11] dimensions. For T < Tc the
thermodynamics of these theories is very well described
in terms of a gas of glueballs which are the only degrees of
freedom of the theory in this regime. For T > Tc the
thermodynamics is well described by a gas of free gluons
(and, accordingly, the thermodynamic observables scale as
N2). If glueballs were present also in the deconfined phase,
they would give an additional contribution to the thermo-
dynamic observables; while it is not possible to completely
exclude the presence of this contribution, it seems unlikely
given the precision of the available data.
These observations suggest that, with the current method

to extract finite T glueball masses [4,5], one is probably
measuring some other finite size scale of the model whose
relation with the glueball spectrum is similar to the relation
which exists between the spacelike string tension �s and
the finite temperature string tension �ðTÞ. Indeed, also �s,
which is extracted from spacelike Wilson loops [12], is
almost constant for T < Tc, increases for T > Tc, and it is
well known to be completely unrelated to the finite tem-
perature string tension �ðTÞ which is instead extracted
from Polyakov loop correlators.
In this Letter, we propose an alternative prescription

for evaluating finite T glueball masses, compatible with
the above observations. The most direct way to ensure the
expected finite T behavior is to construct an observable
with the correct quantum numbers so as to be coupled in
the continuum limit to the glueball states, using only
Polyakov loops so as to have the correct dependence on
the finite temperature string tension. The simplest proposal
is to choose a pair PPy of nearby Polyakov loops

MðxÞ ¼ PðxÞPyðxþ aÞ; (2)
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where a denotes the lattice spacing and PðxÞ is the
Polyakov loop located at the space point x. Then the
glueball mass will be extracted looking at the large R
behavior of the connected correlator of twoMðxÞ operators
as depicted in Fig. 1

GðR; TÞ � hMð0ÞMðRÞi � hMi2 �
R!1e

�m0ðTÞR: (3)

The spacelike version (usually denoted as a ‘‘torelon pair’’)
was used in [2,3] as part of the operator basis to obtain the
T ¼ 0 glueball spectrum. In the proposed interpretation,
this set up is new.

Let us also stress that this is not the only possible choice;
for instance, in non-Abelian gauge theories, an equivalent
interesting possibility would be the Wilson loop obtained
joining the two Polyakov loops with two spacelike links at
t ¼ 0 and t ¼ Nt (this choice is obviously equivalent to our
proposal for Abelian LGT).

The nice feature of our proposal is that it has a natural
interpretation in terms of the effective string model of pure
gauge theories. It is the four point correlator of four closed
effective strings (see Fig. 2). The external legs correspond
to the four Polyakov loops (which are described as closed
strings due to the compactification of the time direction),
while the glueballs are the excitations of the closed string
joining together the four legs. As mentioned in the intro-
duction, this proposal is strongly based on our intuition of
the glueball dynamics coming from the Isgur-Paton model.
It might be useful to make this connection more explicit. If
we could perform a section in the four strings function as
depicted in Fig. 2, the effective string description of the
flux distribution within the section would be given by
the Isgur Paton model. Accordingly, we expect that all
the glueballs (independently of their quantum numbers)

would flow within the closed string, of which they would
represent different radial or rotational excitations. In the
large R limit, only the lowest mass survives, but in princi-
ple, looking at the subleading exponentials for lower values
of R, one could also recover the remaining states of the
spectrum. While the radius of the four external legs is fixed
to be the inverse of the finite temperature, the radius of the
internal closed string coincides with the glueball radius r0
which is one of the parameters of the Isgur-Paton model.
Despite all these interesting features, there is apparently

a major problem with this proposal. In fact, due to dimen-
sional reduction, one expects that any mass scale extracted
from an observable of this type should scale in the vicinity
of the deconfinement transition asmsðTÞ � �ðTÞ=T which,
as it is easy to see, is pretty different from the expected
scaling behavior of Eq. (1).
We shall see below, in a concrete example, how this

problem can be addressed. Indeed, as we shall see, for any
T < Tc, a (glueball) mass with the correct scaling behavior
is always present in the spectrum of GðR; TÞ, but as the
deconfinement transition is approached, this mass becomes
subleading and the large R behavior is dominated by a
different mass scale (whose physical meaning we shall
discuss below) with the ‘‘wrong’’ scaling behaviormsðTÞ �
�ðTÞ=T. However, even in the vicinity of Tc, there is always
a suitable range of values of R in which the glueball mass,
even if subleading, can be unambiguously observed.
Test in the 3D gauge Ising model.—In order to test our

proposal, we computed the mass of the lightest glueball in
the 3D gauge Ising model. This choice has two relevant
advantages.
First, very precise estimates exist for the zero tempera-

ture spectrum [13] with which we can compare our results
in the low T limit. In particular, we know that in the range

of � values that we study in this Letter, m0 ¼ 3:15ð5Þ�
ffiffiffiffiffiffiffiffiffiffi

�ð0Þp

[13].
Second, using dimensional reduction [14] and the fact

that the 3D gauge Ising model has a second order decon-
finement transition in the same universality class of the 2D
Ising magnetization transition, we can predict the behavior
of the correlator GðR; TÞ in the vicinity of Tc using results
borrowed from the exact solution of the 2D Ising model.
In this limit, our observable becomes equivalent to the
energy-energy correlator in the high temperature phase of
the 2D Ising spin model. From the exact solution of the
model, we know that the large R behavior of the function
should be dominated by a new mass scale ms which is
exactly twice the fundamental mass of the model, which,
from dimensional reduction, is known to be �ðTÞ=T
(see, for instance, the discussion in Sec. 2.3 of [15]).
Thus, as anticipated, we expect in this limit

msðTÞ � 2�ðTÞ=T: (4)

We performed three sets of simulations at different
values of the gauge coupling (corresponding to 1=Tc ¼
5:67a, 8a, and 12a, respectively, [16]) in order to test

FIG. 1 (color online). The glueball correlator discussed in
the text.

FIG. 2 (color online). Effective string description of our
proposal.
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scaling corrections. For each value of �, we chose a value
of the lattice size in the spatial direction Ls large enough to
make finite size effects negligible, and studied various
values of compactified time direction Nt � 1=T in the
range T < Tc. For each value of T, we evaluated the
correlator GðR; TÞ for several values of R. We also eval-
uated, for each T in a separate simulation, the finite tem-
perature string tension �ðTÞ (using the methods discussed
in [17]) so as to be able to construct the scaling functions
Eqs. (1) and (4). A few details on the simulations are
reported in Table I.

We found two different behaviors. For low values of T
(in our simulations the threshold was T & 0:6Tc) the data
were perfectly fitted by the following expression:

GðR; TÞ ¼ a0ðTÞ e
�m0ðTÞR

ffiffiffiffi

R
p ; (5)

with good �2 values in the whole range of values of R that
we considered. The data were so precise that we could also

confirm the presence of the expected 1=
ffiffiffiffi

R
p

prefactor. The
values of m0ðTÞ extracted from the fits are reported in the
last few lines (for each �) of Table II and in Fig. 3 and
turned out to follow exactly the expected behavior Eq. (1),
with a value of the glueball mass in good agreement with

the T ¼ 0 value m0 � 3:15
ffiffiffiffiffiffiffiffiffiffi

�ð0Þp

obtained in [13].
For high values of T (i.e., in our case T * 0:6Tc) it

turned out to be impossible to fit the data using Eq. (5).

Reasonable �2 values could only be obtained discarding
the low R values of the correlators and using a different
fitting function

GðR; TÞ ¼ asðTÞ e
�msðTÞR

R2
: (6)

We use the notation ms to stress the fact that this mass was
obtained using a different fitting function. The prefactor
1=R2 is exactly what one would expect for the energy-
energy correlator in the 2D Ising model and the mass ms

extracted form this fit scales exactly as suggested by
Eq. (4). In full agreement with the expectation of dimen-
sional reduction, not only the T dependence but also the
fact that ms is exactly twice the fundamental mass of
the model is perfectly reproduced by the data (see
Table II and Fig. 3).
This explains the large R behavior of GðR; TÞ; however,

in order to also include the small R data in the fit, it turned
out to be mandatory to use a two exponentials fitting
function

GðR; TÞ ¼ a0ðTÞ e
�m0ðTÞR

ffiffiffiffi

R
p þ asðTÞ e

�msðTÞR

R2
: (7)

It is well known that this type of fit is very delicate. In
our case, we used the following procedure: we fit introduc-
ing a Gaussian prior for ms, centered at its value at large R
with width comparable with its uncertainty, and we left, as
free parameters only, a0ðTÞ, asðTÞ, and m0ðTÞ. In this way,
we could fit all the data with a reduced �2 of order unity. It
is important to stress that the identification of the sublead-
ing exponential was facilitated by the very different behav-
ior of the two prefactors, by the wide range of values of R
that we used in the fit, and by the fact that these data were
not cross correlated since, due to the algorithm that we
used (see [17]), each value of R was obtained in an inde-
pendent simulation. These observations should be taken
into account when trying to reproduce our results in other

TABLE I. For each of the three � values, we report the
corresponding critical temperature Tc and the values of Ls, Nt,
and R that we studied.

� 1=Tc Ls Nt R

0.743543 5.67 a 90 7,8,9 6 � R � 20

0.751805 8 a 90 9,10,11,12,13,

14,20,56,64

8 � R � 22

0.756427 12 a 120 20 12 � R � 33

TABLE II. Values of �ðTÞ, msðTÞ=�ðTÞ, msðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞp

, and m0ðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞp

.

� T=Tc �ðTÞ ðmsðTÞTÞ=ð�ðTÞÞ msðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞp

m0ðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞp

0.743543 0.8 0.009 61 2.04(3) 1.40(2) 2.8(1)

0.743543 0.7 0.013 15 1.9(1) 1.74(9) 3.0(3)

0.743543 0.62 0.015 42 1.7(2) 1.9(2) 3.22(8)

0.751805 0.89 0.002 68 2.1(2) 0.99(8) 3.0(3)

0.751805 0.8 0.004 44 1.94(8) 1.29(5) 3.0(2)

0.751805 0.73 0.005 66 1.76(5) 1.46(4) 3.1(4)

0.751805 0.67 0.006 54 3.3(1)

0.751805 0.62 0.007 20 3.23(3)

0.751805 0.57 0.007 71 3.29(5)

0.751805 0.4 0.009 22 3.25(4)

0.751805 0.14 0.010 37 3.14(3)

0.751805 0.125 0.010 40 3.21(2)

0.756427 0.6 0.003 26 3.29(6)
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LGTs. The results of our fits are reported in Table II and
Fig. 3. The subleading mass m0 in the T > 0:6Tc region
turned out to be the natural continuation of the glueball
mass that we had identified for T < 0:6Tc. As it is easy to
see, looking at Fig. 3, m0 follows Eq. (1) up to the highest
temperatures that we studied with a value m0 � 3:15 in
agreement with the T ¼ 0 estimate.

It is important to understand the effective string inter-
pretation of this new scale ms. We have no rigorous proof,
but it is likely that the crossover that we observe between
m0 and ms is due to a competition between the two mini-
mal surfaces bounded by the four Polyakov loops which
are compatible with the topology of the lattice and of our
observable. As the temperature increases, it becomes less
and less costly for the flux tube to wind around the periodic
boundary conditions leading to a minimal surface com-
posed by two parallel flux tubes as depicted in Fig. 4. This
crossover is controlled by the competition of two scales:
the compactification radius 1=T and the glueball radius r0.
As T increases, r0 also increases (since it is due to the flux
tube width which is known to increases with T); thus, a
crossover value of T it will certainly exist, above which
r0 > 1=T, which in the 3D gauge Ising model that we
studied, turns out to be around Tc=2.

Concluding remarks.—The main message of our analy-
sis is that the mass of the lowest glueball (and thus, likely

the whole glueball spectrum) scales at finite temperature as
ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞp

and, thus, is a decreasing function of T=Tc and
vanishes at T ¼ Tc. Our results also suggest that the
Isgur-Paton model is also valid at finite temperature and

that its predicted scaling behavior [m0 �
ffiffiffiffiffiffiffiffiffiffiffi

�ðTÞp

] can be
conciliated with the different scaling behavior predicted by
the Svetitsky-Yaffe conjecture [14] thanks to the appear-
ance of a new mass scale (ms � �ðTÞ=T), which, in the
vicinity of Tc, dominates the large R behavior of the
correlator. This is likely to be a general mechanism. For
instance, a similar phenomenon was also observed a few
years ago in the finite T behavior of the monopole spec-
trum of the random percolation gauge theory (see Fig. 2 of
Ref. [18]). It is also interesting to notice that this new mass
scale strongly resembles the ‘‘spurious states’’ observed in
[2,3] which, in fact, were characterized by a large overlap
with the torelon pair states.
It would be interesting to understand the physical mean-

ing of ms. Preliminary simulations show that, at high
enough temperatures, the picture we have discussed holds
almost unchanged even if we increase the distance between
the two nearby Polyakov loops up to a few lattice spacings.
In this limit, our observable describes the interaction of two
mesons and, according to the effective string picture dis-
cussed above, the mass scalems should measure the attrac-
tive interaction between quarks and antiquarks belonging to
different mesons. Our results show that this interaction
becomes the dominant contribution in the meson-meson
correlator as Tc is approached from below. This agrees
with the intuitive picture of deconfinement as a ‘‘melting’’
of mesons into individual quarks. In our framework, this
melting transition would be driven by the interaction medi-
ated by the mass scale ms. It would be really interesting to
extend our study to a non-Abelian gauge theory. We expect
these correlators to be very noisy; however, using an expo-
nential error reduction algorithmand a reasonable computa-
tional power, we believe it is now possible to extract the
finite temperature glueball mass also in these theories.
We thank F. Gliozzi, P. Grinza, B. Lucini, S. Lottini, and

P. Giudice for useful discussions and C. Caselle for help
with the figures. We also thank B. Lucini for pointing out
the similarity between the ‘‘spurious states’’ of [2,3] and
the mass ms.
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