
Prompt Merger Collapse and the MaximumMass of Neutron Stars

A. Bauswein,1,2 T.W. Baumgarte,1,3 and H.-T. Janka1

1Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching, Germany
2Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
3Department of Physics and Astronomy, Bowdoin College, Brunswick, Maine 04011, USA

(Received 19 July 2013; published 25 September 2013)

We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-

dependent nuclear equations of state and determine the threshold mass above which the merger remnant

promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold

mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our

simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated

with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation

can be used to derive constraints on neutron-star properties from future observations.
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Introduction.—Merging neutron stars (NSs) are among
the most promising sources of gravitational radiation for the
new generation of gravitational wave (GW) interferome-
ters. Detection rates for Advanced LIGO [1] and Advanced
Virgo [2] have been estimated to be between 0.4 and 400
events per year [3]. The merger may result either in a black
hole with a hot accretion torus or a massive, hot, differ-
entially rotating NS. Compact binary mergers were also
suggested as the central engines of short gamma-ray bursts
[4,5]. Material that becomes gravitationally unbound dur-
ing the coalescence may undergo rapid neutron-capture
nucleosynthesis and contribute to the galactic enrichment
by heavy, neutron-rich elements [5,6]. The heat release by
the radioactive decay of the nucleosynthesis products may
also power electromagnetic counterparts [7–9], which are
already being searched for [10,11].

The dynamics and observable signatures of a NS merger
depend on the binary massesM1;2 and the equation of state

(EoS) [12–25] (see also Refs. [26–28] for reviews). At
nuclear densities, the EoS is not completely known (see,
e.g., Ref. [29]) but plays a crucial role in determining the
immediate outcome of coalescence. For sufficiently low-
mass binaries, the merger results in a stable NS. For more
massive binaries, the remnant will ultimately form a black
hole. In the delayed-collapse scenario, the two stars form a
single, differentially rotating merger remnant that is tem-
porarily supported against gravitational collapse by cen-
trifugal and thermal effects [30,31]. Viscous processes,
radiation of GWs, and emission of neutrinos redistribute
and reduce the remnant’s angular momentum and energy,
prompting a delayed collapse on a secular time scale.
Alternatively, the merger may lead to an immediate,
prompt collapse on a dynamical time scale. Such a collapse
is triggered for more massive binaries, whose total mass
Mtot ¼ M1 þM2 cannot be stabilized. For a given EoS,
one can thus define a threshold binary mass Mthres that
separates the two scenarios of prompt and delayed

collapse. The former occurs for Mtot >Mthres, while a
dynamically stable remnant is formed for Mtot <Mthres.
It is intuitive to assume that Mthres scales with the

maximum mass Mmax of isolated, nonrotating NSs [20]

Mthres ¼ kMmax: (1)

Here, Mmax is determined by the EoS and can be found by
integrating the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions (equations of relativistic hydrostatic equilibrium)
[32,33]. The coefficient k also depends on the EoS, or
equivalently, on NS properties [12–14,20].
In this Letter, we adopt a large set of temperature-

dependent, nuclear EoSs in numerical simulations of
binary neutron-star mergers to examine the dependence
of k on the EoS and to establish a relation between Mthres

and Mmax. We focus on equal-mass binaries but also
comment on asymmetric systems below. We find that k
is tightly correlated with the compactness Cmax ¼
ðGMmaxÞ=ðc2RmaxÞ of the maximum-mass TOV configura-
tion (G is the gravitational constant and c the speed of
light). We provide a simple, analytical model to motivate
such a correlation and discuss how our results can be used
to constrain NS properties, in particular,Mmax, from future
observations. For a given EoS, our findings predict which
binary systems undergo prompt or delayed collapse
upon merger with corresponding consequences for the
postmerger GW signal, the mass ejection during coales-
cence, and the particular conditions for launching a colli-
mated outflow favorable for a gamma-ray burst (e.g., torus
properties and baryon loading of the environment).
Method.—We perform numerical simulations of NS

mergers to determine the EoS dependence of Mthres, using
a 3D relativistic smoothed particle hydrodynamics (SPH)
code that employs the conformal flatness approximation of
Einstein’s field equations and includes a GW backreaction
scheme to account for energy and angular momentum
losses due to GWemission (see Refs. [15,34,35] for details
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of the code). Our study considers 12 microphysical, fully
temperature-dependent EoSs with maximum masses in
the range of 1.95 to 2:79M�, which is compatible with
the observation of a 1:97M� � 0:04M� pulsar [36] (see
Table I). With the exception of the IUF EoS, these EoSs
are also consistent with the detection of a NSwith a mass of
2:01M� � 0:04M� [49]. The radii Rmax of the maximum-
mass configurations vary between 10.32 and 13.43 km (see
also Ref. [23] for the mass-radius relations of most EoSs
considered here). The EoSs are chosen without any selec-
tion procedure and cover approximately the full range of
high-density models regarding their stellar properties. As
initial conditions, we set up cold NSs in neutrinoless beta
equilibrium on a quasiequilibrium orbit a few revolutions
before merging. We assume irrotational stars since tidal
locking is unlikely [50,51], and the orbital period is short
compared to possible stellar rotation. Unless stated other-
wise, we use a resolution of about 340 000 SPH particles.

For each EoS, we determine Mthres by performing simu-
lations of binaries with different values of Mtot, which is
defined as the binary’s total gravitational mass at infinitely
large binary separation. We focus on equal-mass binaries
here and increaseMtot in increments of 0:1M�. We identify
Mstab with the mass of the most massive binary in our
sample with a dynamically stable remnant, i.e., the most
massive system that results in a delayed collapse. We
similarly identifyMunstab with the mass of the least massive
binary whose merger triggers prompt collapse. We then
estimate Mthres ¼ ðMstab þMunstabÞ=2M� � 0:05M�.

Since thermal pressure has an important effect on the
collapse behavior (see, e.g., Refs. [31,35,52]), we have

only considered fully temperature-dependent EoSs in
this study. Many other simulations instead supplement a
barotropic, zero-temperature EoS with a thermal ideal-gas
component in order to approximate finite-temperature
effects [12–14,19,20,23,26,35]. We have found that in
such a ‘‘hybrid’’ treatment the threshold mass Mthres

depends strongly on the ideal-gas index �th. Since �th is
neither unambiguously defined nor constant [35], fully
temperature-dependent EoSs will provide more reliable
values for Mthres than a hybrid treatment.
In order to calibrate the error introduced by the confor-

mal flatness approximation, we reproduced the fully rela-
tivistic simulations of Ref. [20] and found the same
collapse behavior in all but one case, for which we
obtained a small shift in Mthres [53]. We conclude that
the effects of the conformal flatness approximation on
our results are small. We verified that our resolution with
SPH particles is sufficient by reproducing our findings for
the DD2 EoS with both 731 000 and 1 202 000 SPH parti-
cles. Finally, we reran our simulations for the DD2 EoS
starting with different initial binary separations (leading to
2.5, 3.5, and 4.5 orbits before merging) to confirm that this
separation does not affect our results.
Results.—The EoS dependence of Mthres and k can be

expressed by the stellar parameters of nonrotating NSs,
which are uniquely determined by the EoS and thus char-
acterize a given EoS. Our survey reveals that k scales very
well with the compactness Cmax ¼ ðGMmaxÞ=ðc2RmaxÞ of
the maximum-mass configuration of nonrotating NSs
(Fig. 1). We find a similarly tight relation when k is
expressed as a function of C�

1:6 ¼ ðGMmaxÞ=ðc2R1:6Þ, where
R1:6 is the radius of a 1:6M� NS (see Fig. 1). SinceR1:6 may
be more easily determined than Rmax, both by future obser-
vations [23,29,55,56] and theoretical considerations [57],
C�
1:6 might be a more useful quantity than Cmax.

As can be seen in Fig. 1, k is a nearly linear function
of C�

1:6 in the regime of interest. The maximum residual

from the linear fit k ¼ jC�
1:6 þ a with j ¼ �3:606 and

TABLE I. Sample of temperature-dependent, nuclear EoSs
used in this study. Here Mmax, Rmax, Cmax, and �c are the
gravitational mass, areal radius, compactness, and central energy
density of the maximum-mass TOV configurations. We list �c in
units of the nuclear saturation density �0 ¼ 2:7� 1014 g=cm3.
R1:6 is the areal radius of 1:6M� NSs. Mthres denotes the total
binary mass that separates prompt from delayed collapse (see the
text). fstabpeak is the dominant GW frequency in the postmerger

phase of the binary with Mtot ¼ Mstab, the most massive binary
configuration of our sample that does not collapse promptly.

EoS

Mmax

(M�)
Rmax

(km) Cmax

R1:6

(km)

Mthres

(M�) �c=�0

fstabpeak

(kHz)

NL3 [37,38] 2.79 13.43 0.307 14.81 3.85 5.6 2.78

GS1 [39] 2.75 13.27 0.306 14.79 3.85 5.7 2.81

LS375 [40] 2.71 12.34 0.325 13.71 3.65 6.5 3.05

DD2 [38,41] 2.42 11.90 0.300 13.26 3.35 7.2 3.06

Shen [42] 2.22 13.12 0.250 14.46 3.45 6.7 2.85

TM1 [43,44] 2.21 12.57 0.260 14.36 3.45 6.7 2.91

SFHX [45] 2.13 10.76 0.292 11.98 3.05 8.9 3.52

GS2 [46] 2.09 11.78 0.262 13.31 3.25 7.6 3.19

SFHO [45] 2.06 10.32 0.294 11.76 2.95 9.8 3.67

LS220 [40] 2.04 10.62 0.284 12.43 3.05 9.4 3.52

TMA [44,47] 2.02 12.09 0.247 13.73 3.25 7.2 2.96

IUF [38,48] 1.95 11.31 0.255 12.57 3.05 8.1 3.31
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FIG. 1. Coefficient k [Eq. (1)] as a function of Cmax ¼
GMmax=ðc2RmaxÞ (crosses) and C�

1:6 ¼ GMmax=ðc2R1:6Þ (circles).

PRL 111, 131101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

27 SEPTEMBER 2013

131101-2



a ¼ 2:380 is only 0.025 [58]. By fixing R1:6 or Rmax (see
also the discussion of Fig. 3), Mthres becomes a quadratic
function of Mmax only. Considering the maximum devia-
tion of k from the fit implies thatMthres can be converted to
Mmax with a precision of a few percent for a fixed R1:6.
An uncertainty of, for instance, 0.5 km in R1:6 would
add another �5 percent error. The actual error may be
smaller because the deviation of k from the fit includes the
intrinsic scatter among different EoSs but also an artificial
contribution from the finite sampling of Mtot values.

We compared our findings with those of Ref. [20], where
six barotropic EoSs with a hybrid treatment of finite-
temperature effects were adopted and an approximate rela-
tion between k and the radius R1:4 of a 1:4M� NS was
suggested. Testing this relationship with our extended set
of temperature-dependent EoSs results in a distribution
with rather wide scattering instead of a tight correlation
(see Fig. 2, left panel, and Table I; R1:6 is very similar to
R1:4). However, using the numerical data of Ref. [20] and
expressing k as a function of C�

1:6 or Cmax rather than R1:4,

we found a tight correlation, as for our results. Therefore,
we suspect that the approximate scaling with R1:4 sug-
gested in Ref. [20] is a selection effect due to the limited
number of EoSs used therein [59].

The compactness Cmax is a measure of the EoS’s stiff-
ness at high densities (Fig. 2, right panel; see also
Refs. [29,60]), where we characterize the stiffness by the
ratio of the mean density h�i ¼ 3Mmax=ð4�R3

maxÞ to the
central density �c (i.e., the inverse central condensation). A
tight correlation between k and Cmax thus implies that k
depends predominantly on the stiffness of the EoS. This
dependence can be motivated qualitatively with the help of
a simple Newtonian model. As suggested in Ref. [61], a
rough estimate of the fractional increase in the maximum
mass �M=Mmax is given by 3T=jWj, so that k �
1þ 3T=jWj. Here, T is the rotational kinetic energy and
W the potential energy. We compute T ¼ J2=ð2IÞ, where I
is the remnant’s moment of inertia, from the angular mo-
mentum J that the binary carries at the instant of merging.
Approximating the merging of an equal-mass binary in
circular orbit to occur when the binary separation is twice

the radius of each individual (spherical) star R? and assum-
ing that the progenitors’ masses are concentrated at their
centers, we find J2 � GM3

totR?=8. Neglecting mass loss as
well as deviations from spherical symmetry and assuming
that the merger remnant forms a polytrope with polytropic
index n, we have W ¼ �3G=ð5� nÞM2

tot=R, where R is
the radius of the remnant and I ¼ 2�nMtotR

2=5. Here, the
coefficients �n depend on n only and are tabulated in
Ref. [62]. The EoS’s stiffness as well as �n increases
with decreasing n. Using the polytropic mass-radius rela-
tionship for the merging NSs and merger remnant, we also

have R?=R ¼ 2ðn�1Þ=ð3�nÞ. Collecting terms, we now

obtain k � 1þ 5ð5� nÞ2ðn�1Þ=ð3�nÞ=ð32�nÞ. While this
crude approximation overestimates the deviation of k
from unity by about a factor of 2, it correctly predicts
two important qualitative features of our numerical results:
It suggests that k depends predominantly on the EoS’s
stiffness (since for Newtonian polytropes the stiffness
h�i=�c depends on n only), and it shows that k decreases
with increasing stiffness (which can be seen by inserting
values for n and �n). Loosely speaking, a binary with a
stiffer EoS (i.e., a larger h�i=�c) has less angular momen-
tum when merging and its remnant has a larger moment of
inertia. These effects combine to decrease T=jWj, thereby
decreasing k.
For the EoSs in our sample, we also observe a tight

correlation between Rmax and R1:6, which implies a close
relation between Cmax and C�

1:6.

Observational constraints on the maximum NS mass.—
The findings of this study may help to place limits on the
maximum mass Mmax of NSs in the case that future obser-
vations, e.g., GW detections, provide an estimate of Mthres

(cf. Ref. [12]). We assume that delayed and prompt col-
lapse can be distinguished from the presence or absence of
GW emission in the 2–4 kHz range produced by the
oscillations of the merger remnant, and that the binary
mass of the merger can be inferred from the preceding
GW inspiral signal, which thus sets a bound on Mthres.
Depending on the nature of available observations, this
information could be used in different ways. In the follow-
ing, we discuss three speculative possibilities.
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FIG. 2. Left panel: Coefficient k [Eq. (1)] versus radius R1:6 of
1:6M� NSs. Right panel: Compactness Cmax as a function of the
EoS’s stiffness expressed by the ratio of the average density
h�i ¼ 3Mmax=ð4�R3

maxÞ and central energy density �c.
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FIG. 3. Dominant GW frequency fstabpeak of the postmerger phase
for different NS EoSs as function of radius Rmax (left panel) and
Mstab (right panel). For each EoS, fstabpeak is the frequency fpeak for

the most massive dynamically stable binary (Mtot ¼ Mstab).
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We first assume that a number of detections of NS
mergers have been made and that observations of both
prompt and delayed collapses bracket Mthres to a certain
accuracy. If R1:6 (or the radius of a NS of any other mass
[58]) is independently known to some accuracy, either from
future GW measurements (e.g., Refs. [23,55,56]) or astro-
nomical observations [29], then the relation shown in Fig. 1
provides an estimate for the maximum mass of nonrotating
NSs in isolation. The accuracy of this estimate depends on
the accuracy of Mthres and R1:6, of course, but since the
scatter in the relation between k and C�

1:6 is quite small, this

scatter will contribute only a few percent of error.
As our second example, we point out that even a single

observation of a delayed collapse could provide both an
upper and a lower bound onMthres. The lower bound is given
immediately by the measured binary mass Mtot. An upper
bound can be established from the dominant GW frequency
fpeak of the postmerger oscillations. To show this, we note

that fpeak increases with increasing binary mass for a given

EoS [14,23]. Themeasured value of fpeak therefore provides

a lower limit for the peak frequency fstabpeak of a binary with

the highest total binary mass Mstab leading to delayed col-
lapse. In Fig. 3, we show that fstabpeak exhibits a tight anti-

correlation withRmax and a somewhat looser anticorrelation
with Mstab, which approximates Mthres. The lower limit on
fstabpeak therefore provides an upper limit on both Mthres and

Rmax. This means that a measurement of fpeak and the binary

masses establishes both an upper and a lower limit onMthres,
as well as an upper limit on Rmax. These bounds can then be
combined to establish a constraint on Mmax.

In the third scenario, we again consider just a single
detection, but this time we assume that prompt collapse has
been established unambiguously. The measured binary
mass Mtot then forms an upper limit for Mthres (as well as
a lower limit of Mtot=2). Without additional information
for Rmax or R1:6, the tightest possible constraint onMmax is
then Mmax ¼ Mthres=k <Mtot=kmin, where kmin is the
smallest conceivable value of k. For concreteness, consider
a 1:5–1:5M� binary system that leads to prompt collapse.
Assuming that our EoS sample covers the full range of
high-density models, we have kmin � 1:3. Therefore, a
single prompt-collapse detection with Mtot ¼ 3M� leads
to the conclusion that Mmax � 3M�=1:3 � 2:3M�.

All three of our examples above hinge, of course, on
measurements of Mtot and/or fpeak. Measuring the former

requires a relatively large signal-to-noise ratio, since, to
leading order, the GW phasing during the inspiral depends
on the binary’s chirp mass rather than the total mass
[63–67]. Since the dominant postmerger GW frequencies
are outside of the most sensitive range of the upcoming
GW interferometers, detecting these signals will also be
possible only for nearby events.

In principle, the precise identification of Mthres is prob-
lematic because, asMtot approachesMthres from below, the
remnant’s lifetime becomes increasingly short and the
postmerger signal increasingly weak. In practice, however,

the lifetime has a steep sensitivity to the total binary mass.
For instance, we find that 8 out of our 12 simulations with
Mtot ¼ Mstab yield remnant lifetimes exceeding 10ms. This
shows that binary systems with masses only slightly below
Mthres already result in relatively long-lived remnants.
Discussion.—As stated before, we have assumed equal-

mass binaries in the above simulations. This assumption is
not entirely unjustified, since observations of binary NS
systems suggest small mass ratios (see, e.g., Ref. [29] for a
review). However, in order to evaluate the effect of unequal
masses, we have performed additional simulations with the
SFHO, DD2, and NL3 EoSs for binaries with total masses
Mstab and Munstab (as found from the equal-mass simula-
tions), but now with a mass ratio q 	 M1=M2 � 0:9. For
the given sampling of Mtot, we found that symmetric and
asymmetric systems of the same total mass show the same
collapse behavior. Generalizing our analytical considera-
tions to nonequal masses and expanding the result in
deviations from symmetry, � 	 q� 1 shows that correc-
tions appear at order �2. This corroborates our numerical
finding that moderate deviations of the mass ratio from
unity have a small effect on k.
Future work could improve our study in a number of

different ways. Even though we expect that the effects of
the conformal flatness approximation are small, it would
be desirable to perform similar simulations with a fully
relativistic treatment. These simulations should also include
an even larger sample of temperature-dependent EoSs and
should explore the effects of asymmetric binaries.
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