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Inspired by the Solovay-Kitaev decomposition for approximating unitary operations as a sequence of

operations selected from a universal quantum computing gate set, we introduce a method for approximat-

ing any single-qubit channel using single-qubit gates and the controlled-NOT (CNOT). Our approach uses

the decomposition of the single-qubit channel into a convex combination of ‘‘quasiextreme’’ channels.

Previous techniques for simulating general single-qubit channels would require as many as 20 CNOT gates,

whereas ours only needs one, bringing it within the range of current experiments.
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Quantum computing requires the capability to effi-
ciently approximate arbitrary quantum operations as a
sequence of a finite set of operations. The celebrated
Solovay-Kitaev theorem [1,2] addresses this problem by
providing a strategy for approximating any unitary
operation U within error tolerance � as a sequence of
O (polylog(1=�)) gates chosen from the finite set. Dawson
and Nielsen [3] introduced an algorithm for the Solovay-
Kitaev decomposition, and many improvements have
appeared recently [4–10]. These algorithms are central to
quantum simulation efforts, which is especially important
because quantum simulation is regarded as the most prom-
ising direction for a nontrivial quantum computation [11].

Closed-system (i.e., Hamiltonian-generated) quantum
simulation is well established [12–16], but open-system
quantum simulation is still at an early stage with attention
focused on simulating memoryless (Markovian) dynamics
based on a Lindbladmaster equation [17–22]. Open-system
quantum simulation is important to cool to the ground state
[23], prepare thermal states [24,25] and entangled states
[26,27], and study nonequilibrium quantum phase transi-
tions [28]. Conversely, dissipative dynamics can be a
resource for universal quantum computing [29].

Given the importance of open-system quantum simula-
tion, efficiently approximating channels rather than just
approximating unitary evolution is critical. Here, we solve
single-qubit channel simulation, developing methods that
could ultimately be adapted for multiqubit channels. Our
channel simulator could be regarded as a primitive for
simulating open-system dynamics, in the same way as
single-qubit unitary gates are a primitive for closed-system
dynamics.

An obvious direction for implementing a channel is
applying Stinespring dilation to implement a channel as
a unitary operator on an expanded Hilbert space. This
resultant unitary transformation can then be implemented
by standard techniques [4–10]. The problem with this
approach is that it requires implementing a general unitary

operator on a space with dimension given by the cube of
the Hilbert space dimension for the original system. In the
case of a single-qubit channel, a unitary operation on three
qubits would be required. The best known technique to
implement a general unitary on three qubits requires a
complicated circuit with 20 controlled-NOT (CNOT) gates
[30]. An alternative technique [18] uses one ancilla qubit
but uses a sequence of a large number of interactions,
which would require a large number of CNOTs.
It is possible to achieve channels far more easily in

special cases, or probabilistically, and to date, experimen-
tal realizations have had these limitations [31–35]. In
particular, a unital qubit channel, such as the phase damp-
ing channel, can be achieved relatively easily by applying a
random unitary operation. Alternatively, if one is willing to
accept a significant probability of failure, then it is straight-
forward to provide a method to generate arbitrary channels
[36]. In contrast, our technique for qubit channels is gen-
eral, deterministic, and only requires one CNOT and ancilla
together with local operations. As it is already possible to
demonstrate a single CNOT in several physical systems [37],
our technique is implementable with current technology.
We quantify the error tolerance � by the Schatten one-

norm distance between the simulated channel and the
correct channel [21,38]. The classical and quantum algo-
rithms we derive for single-qubit channel simulation are
efficient in that their time and space costs are no worse than
polylog(1=�). Our algorithms and complexity results for
channel simulation rely on decomposing the channel into a
convex combination of simpler channels, dilating each of
these channels to unitary mappings on two qubits [18], and
making use of the Solovay-Kitaev Dawson-Nielsen
(SKDN) algorithm [3].
A succinct statement of the problem we solve follows.
Problem.—Construct an efficient autonomous algorithm

for designing an efficient quantum circuit, implemented
from a small single-qubit universal gate set, that accurately
simulates any completely positive trace-preserving
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single-qubit mapping for any input state within prespeci-
fied error tolerance � quantifying the distance between true
and approximated states.

Our solution has the following components: (i) the
decomposition of arbitrary single-qubit channels as a con-
vex combination of quasiextreme single-qubit channels
[39], (ii) a cost reduction of single-qubit channel simula-
tion from requiring a unitary operation on three qubits to a
circuit with one ancillary qubit and one CNOT, (iii) a geo-
metric lookup database for implementing the SKDN algo-
rithm [3] to decompose unitary operators, and (iv) a proof
of efficient simulation by showing that the costs for both
the classical algorithm for designing the circuit and the
quantum circuit itself are at most polylog(1=�).

Now, we proceed to the technical aspects. The system is
a single qubit whose state is a positive semidefinite opera-
tor � 2 T ðH SÞ with H S the two-dimensional Hilbert
space for the system and T ðH Þ denoting the set of
operators on Hilbert space H . The channel is

E : T ðH SÞ ! T ðH SÞ: � �
X

i

Ki�K
y
i ; (1)

with the summation at the end showing the operator-sum
representation [40,41]. The operators fKig are called Kraus
operators and satisfy

P
iK

y
i Ki ¼ 1.

The channel can be dilated to a unitary operator on the
joint Hilbert space H SE ¼ H S �H E, with E denoting
the environment (or ancillary space) being introduced
to purify the dynamics. Conversion of channel E to a
Hamiltonian-generated unitary evolution can be achieved
by performing a Stinespring dilation with unitary operator
U: H SE ! H SE, and

U :T ðH SEÞ!T ðH SEÞ :�SE��0SE¼U�SEUy; (2)

such that trE�
SE ¼ �S, trE�

0SE ¼ �0S, and E: �S � �0S.
Specifically, the Kraus operators (1) have representation
Ki ¼ EhijUj0iE for jiiE (including j0iE) an orthonormal
basis state of the environment [41].

The unitary operator U is a minimal dilation of E if U is
a dilation such that dimH E ¼ ðdimH SÞ2. For the case of
a single qubit, dimH E ¼ 4 for minimal dilation. Although
H E should have a dimension that is the square of the
dimension of H S, and hence four dimensional, we will
show that we only require a single resettable ancillary
qubit, so dimH E ¼ 2.

We develop the algorithm for a general single-qubit
completely positive trace-preserving (CPTP) map using
the geometrical state representation �¼ð1=2Þ½1þb ���,
where b is a three-dimensional vector and � :¼ ðX; Y; ZÞ.
The CPTP map can then be represented by a 4� 4
matrix [39,42]

E !T¼ 1 0
t T

� �
; Tij¼1

2
tr½�iEð�jÞ�; �0 :¼1; (3)

with T having 12 independent parameters. In this repre-
sentation, the channel is an affine map [43]

E : � �
1

2
ð1þ b0 � �Þ; b0 ¼ Tbþ t: (4)

Geometrically, E maps the state ball into an ellipsoid, with
t the shift from the ball’s origin and T a distortion matrix
for the ball.
In our approach, the channel is constructed from two

simpler channels, each of which can be simulated using
only one ancillary qubit. Any single-qubit channel can be
decomposed into a convex combination of two channels
belonging to the closure of the set of extreme points of the
set of single-qubit channels [39]. It turns out that these
quasiextreme channels, denoted as Eqe, can be simulated
using only one ancillary qubit. In addition, the convex
combination is easy to implement, simply by probabilisti-
cally implementing one or the other of the quantum
channels.
For any CPTP map, the distortion matrix can be trans-

ferred into a diagonal form via a singular-value decom-
position, so E ¼ Uð’ÞE0Uð�Þ for some E0 with a diagonal
T0 [43]. In the case of the quasiextreme channel, the shift
vector and distortion matrix are of the form [39]

t 0
qe ¼ ð0; 0; sin� sin�ÞT; (5)

T 0
qe ¼ diagðcos�; cos�; cos� cos�Þ (6)

for some� and �. This map can be obtained via two Kraus
operators

K0 ¼ cos� 0
0 cos�

� �
; K1 ¼ 0 sin�

sin� 0

� �
; (7)

where � ¼ ð�þ �Þ=2 and � ¼ ð�� �Þ=2. The channel
Eqe is a generalization of the amplitude damping channel.
The circuit to implement the channel Eqe is depicted in

Fig. 1. The rotation takes the form Ryð2�Þ¼ expð�iY�Þ¼
1cos�� iY sin�; the two angles in the rotations are 2�1¼
���þ	=2 and 2�2¼�þ��	=2. The measurement
in the computational basis with the outcome j0i (j1i)
corresponds to the realization of the Kraus operator K0

(K1). There is only one CNOT required because the final
operation is just a classically controlled X operation.
To explain the action of this circuit, note first that the

unitary operations Uð�Þ and Uð’Þ are just the unitaries to
diagonalize the distortion matrix. If the system qubit were
in the state j0i, then the CNOT would have no action on the
ancilla, and the two rotations combine to give Ryð2�Þ,
which yields the state cos�j0i þ sin�j1i. If the system is

FIG. 1. The circuit to implement the quasiextreme channel Eqe.
The unitary operators Uð�Þ and Uð’Þ serve to diagonalize the
channel.
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in the state j1i, then an X operation flips the ancilla, and
then the two rotations give cos�j0i þ sin�j1i. Measuring
the ancilla in the state j0i then multiplies state j0i for the
system by cos� and state j1i by cos�; this is the action of
K0. Similarly, measuring the ancilla in the state j1i multi-
plies state j0i for the system by sin�, and state j1i by sin�;
this is the action of the operator

K0
1 ¼ sin� 0

0 sin�

� �
: (8)

In that case, we can simply apply X, which gives the
required Kraus operator K1.

In contrast, the direct approach to simulate a single-qubit
channel is to use Stinespring dilation to construct a unitary
acting on the system qubit and two ancillary qubits. This
approach is somewhat inefficient, as a large number of
gates is needed to implement a three-qubit unitary. The
best known technique to achieve a three-qubit unitary uses
20 CNOTs [30], although the proven lower bound is 14 [44].
In contrast, our technique succeeds with only one such
gate. Our result is now summarized in Proposition 1.

Proposition 1.—Any single-qubit CPTP channel E can
be simulated with one ancillary qubit, one CNOT, and four
single-qubit operations.

Proof: From Theorem 14 in Ref. [39], any single-qubit
channel E can be decomposed into the convex combination
E ¼ pEqe

1 þ ð1� pÞEqe
2 , with 0 � p � 1. Note that chan-

nels Eqe
1 and Eqe

2 can be diagonalized, but the unitary

operators to do so may be different in the two cases. The
quasiextreme channels Eqe

i can be realized by using the
appropriate initial unitary operator, then applying the cir-
cuit above with corresponding angles �i and �i, and then
applying the final unitary operator. Then, the channel E can
be simulated by randomly implementing the two quasiext-
reme channels according to a classical random number
generator with probabilities p and 1� p. The above circuit
uses one CNOT, two rotations, a classically controlled X
gate, and two additional unitary operators to diagonalize
Eqe
i . The final diagonalizing unitary Uð’Þ may be com-

bined with the X gate, so only four single-qubit unitary
operators are needed. j

In order to complete the decomposition of the channel
into a universal gate set, it is necessary to decompose the
single-qubit unitary operators in Proposition 1 into the gate
set. In the case that the gate set includes Clifford and T

(T ¼ Z1=4) operations, then any of the techniques given in
Refs. [3–8] can be used. Here, we are concerned with the
more general problem of what can be achieved with CNOTs
and a universal single-qubit gate set S. This problem is
relevant to experimental situations where not all single-
qubit gates can be applied. The motivation for considering
Clifford and T operations in other work is that they are
important for encoded logical qubits with error correction,
but such an experiment would be beyond current
technology.

We therefore consider a variation of the SKDN approach
[3] with the CNOT and gates from S. Figure 2(a) depicts the
SKDN strategy by which any single-qubit unitary operator
Uð�Þ ¼ ei
0 expð�i� � �Þ can be approximately (within �)
decomposed into a unitary operator ~U ¼ � � �U2U1U0

comprising a polylog(1=�) sequence of gates from S [1,2].
The SKDN algorithm provides an explicit con-

struction that requires at most Oðlog2:71ð1=�ÞÞ time and
Oðlog3:97ð1=�ÞÞ gates [3] but requires a database of
single-qubit gates fGng depicted schematically in
Fig. 2(b). This database gives each Gn as a sequence of
gates from S. However, Dawson and Nielsen do not discuss
how to search this database [3]; we explicitly provide an
efficient geometric search technique, depicted in Fig. 2(c)
and described below.
Ignoring the global phase, each U can be identified with

coordinate � 2 R3. As Uð�Þ ¼ U½�ð1� 	=j�jÞ�, the
space R3 can be reduced to a radius 	=2 ball, as depicted
in Fig. 2(c). We therefore embed a cubic lattice into R3 to
use as a lookup table. That is, we construct a database such
that, for each cube, there is a sequence of gates that
produces a unitary operation within that cube. Then, if
we require a sequence of operators to approximate a given
unitary operator, we identify which cube in the lattice this
unitary operator occupies and then select the correspond-
ing sequence of operators from the database. Each cube has

side length 1=32
ffiffiffi
3

p
, thereby ensuring a maximum separa-

tion of 1=32 between the unitary and the approximating
sequence, which is sufficient for the SKDN algorithm. For
the example of T and H (Hadamard) gates, we find that no
more than 36 are required. (An alternative database lookup
procedure is given in Ref. [6].)
Using this database construction with the SKDN algo-

rithm and Proposition 1, we have an explicit algorithm to
decompose a single-qubit channel into CNOTs and gates

FIG. 2 (color online). Schematic diagram for the SKDN algo-
rithm. (a) Representation of the algorithm on the Bloch ball. The
SKDN algorithm finds a polynomial-length gate sequence to
approximate an arbitrary single-qubit unitary operator U by
starting with an initial approximation U0 with initial error bound
�0 < 1=32 followed by iteratively constructing operators to
produce decreasing errors. (b) Action of gates Gn in the lookup
database represented as rotations of the sphere. (c) The radius
	=2 ball of single-qubit unitary operations (note that this is
different than the Bloch ball). Each lookup database gate ele-
ment Gn is located within one cube of a period 1=32

ffiffiffi
3

p
cubic

lattice. At the boundary, a cube’s center can lie outside the ball
but still must be a legitimate domain for the search algorithm.
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from S. This classical design algorithm accepts as input the
error tolerance � for the single-qubit channel and the
channel parameters E. As output, the algorithm delivers
the description of the quantum algorithm implemented as a
sequence of gates from the instruction set.

The procedure to be followed will depend on what
single-qubit gates are available experimentally and the
desired accuracy. For experiments in the near future, the
best approach is likely to be to simply use a lookup
database directly, as it will be challenging to produce
single-qubit sequences longer than 36. Alternatively, if
the full set of single-qubit unitaries is available, then one
may use the circuit in Fig. 1 directly. The procedure out-
lined above should be used if there is a restricted single-
qubit gate set and high precision is required. In the special
case that the single-qubit gate set is fH; Tg, then one can
use new techniques, such as those in Ref. [10].

For completeness, we need to bound the error in the
channel in terms of the error in the unitary. For the unitary,
the error is simply the worst-case two-norm distance
between the true and approximate pure states in the system
Hilbert space

k U� ~U k:¼ max
jc i

k ðU� ~UÞjc i k : (9)

The appropriate measure of error for the channel is the
Schatten one-norm [21,38]

kE� ~Ek1!1 :¼max
�

kEð�Þ� ~Eð�Þk1; k�k1 :¼ tr
ffiffiffiffiffiffiffiffiffi
�y�

p
:

(10)

The following proposition establishes that the channel-
simulation error condition is satisfied if the error bound
for the dilated unitary operator U is �=2.

Proposition 2.—For CPTP maps E, ~E: T ðH Þ !
T ðH Þ with respective minimal dilations U, ~U: H �
H 0 ! H �H 0, then kE � ~Ek1!1 � 2kU� ~Uk.

Proof: Using Eq. (17) of Ref. [45] and the convexity of
trace distance,

2max
jc i

kðU� ~UÞjc ik �max
jc i

kUjc ihc jUy � ~Ujc ihc j ~Uyk1
�max

�
kEð�Þ � ~Eð�Þk1: (11)

Using the definitions, this immediately gives the required
inequality. j

We now articulate our complete result for the decom-
position of the channel into the universal gate set.

Proposition 3.—Any single-qubit channel E can be
approximated within one-norm distance � using
Oðlog3:97ð1=�ÞÞ computer time and gates from the set S,
and using one CNOT, one ancillary qubit and one
classical bit.

Proof: First, via Proposition 1, the channel can be
decomposed into a convex combination of channels and
thereby simulated using one ancilla qubit, one CNOT

operation, and four single-qubit unitary operators.
Provided each of the channels in the convex combination
is simulated within distance �, the overall channel is simu-
lated within distance � by the convexity of the one-norm
distance.
Via Proposition 2, the error bound for the channel is

satisfied if the two-qubit unitary operators are approxi-
mated within distance �=2. There are four single-qubit
unitary operators used within the circuit. The error bound
will be satisfied, provided each of these unitary operators is
approximated within distance �=8. These unitary operators
can be approximated via the SKDN algorithm with
Oðlog3:97ð1=�ÞÞ gates from S. Using our lookup database,
the SKDN algorithm may be implemented efficiently, in
that the classical complexity to determine the gate
sequence does not exceed Oðlog2:71ð1=�ÞÞ. j
We now have the full algorithm for open-system single-

qubit channel quantum simulation. For a given input chan-
nel, the channel will be decomposed into the form in
Proposition 1, and then the single-qubit rotations which
contain continuous variables therein will further be decom-
posed into sequences of universal gates satisfying the error
condition. This simulator accepts the initial state � and

yields the approximate output state ~Eð�Þ while satisfying
the error condition of Proposition 2.
This scheme could be implemented in a number of

quantum computing architectures. For example, it could
be implemented with linear optics, although in that case,
the CNOT is nondeterministic, and other methods are avail-
able to perform nondeterministic channels [35,36]. A
promising architecture to deterministically demonstrate
this scheme is trapped ions. CNOT gates have been demon-
strated with error below 0.01 [46], and single-qubit gates
have been demonstrated with error below 10�4 [47]. In the
case of trapped ions, it is possible to perform general
single-qubit gates, so it is not necessary to use gate sequen-
ces. Nevertheless, the ability to perform large numbers
of sequential single-qubit operations (nearly 1000 in
Ref. [47]) means that gate sequences could easily be
demonstrated.
In summary, we have shown how to implement a

single-qubit channel using the CNOT and a universal set
of single-qubit gates S. This can be regarded as a quantum
simulation, except it differs from other quantum simulation
methods in that we directly simulate the mapping rather
than continuous-time evolution. Our quantum circuit is
appealing for experimental implementation because only
two qubits are necessary, rather than three as the
Stinespring dilation theorem suggests. As a result, only
one CNOT operation is needed, as compared to 20 for a
straightforward application of Stinespring dilation. When
decomposing the single-qubit unitary operators into gates
from S, the number of gates and classical complexity
follow from the Solovay-Kitaev Dawson-Nielsen algo-
rithm. This work raises a number of questions for future
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research. Most importantly, is it possible to achieve similar
simplifications for qudit channels? Another question is
whether it is possible to obtain further simplifications for
the simulation of qubit channels.
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