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Given a specific interacting quantum Hamiltonian in a general spatial dimension, can one access its

entanglement properties, such as the entanglement entropy corresponding to the ground state wave

function? Even though progress has been made in addressing this question for interacting bosons and

quantum spins, as yet there exist no corresponding methods for interacting fermions. Here we show that

the entanglement structure of interacting fermionic Hamiltonians has a particularly simple form—the

interacting reduced density matrix can be written as a sum of operators that describe free fermions. This

decomposition allows one to calculate the Renyi entropies for Hamiltonians which can be simulated via

determinantal quantum Monte Carlo calculations, while employing the efficient techniques hitherto

available only for free fermions. The method presented works for the ground state, as well as for the

thermally averaged reduced density matrix.
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Quantum entanglement plays a crucial role in exposing
a variety of many-body quantum phenomena, such as
topological order [1,2], surface states in quantum Hall
systems and topological insulators [3,4], and the universal
features of critical quantum systems [5–8]. Despite its
theoretical appeal, the nonlocal nature of the entanglement
makes it a rather difficult quantity to measure in experi-
ments, or to even evaluate numerically. In recent years,
new numerical methods have been developed to calculate
entanglement measures, such as the Renyi entanglement
entropy, for Hamiltonians of interacting bosons and quan-
tum spin systems [9,10]. There is no obvious generalization
of these techniques to fermionic systems, which differ
fundamentally from bosons in the sign structure of their
wave functions. In fact, the only known techniques for
fermions are either variational in nature [10,11], or they
are restricted to one-dimensional systems [12] and do not
address the following basic question: given a specific
Hamiltonian of interacting fermions in a general spatial
dimension, how does one calculate any entanglement mea-
sure in an unbiased manner? In this paper we provide an
answer to this question for all Hamiltonians that can be
simulated without the fermionic sign problem in the
standard determinantal quantum Monte Carlo (DQMC)
technique [13–15].

Our main result is, in fact, more general. We show that
the reduced density matrix �A for an interacting fermionic
system, corresponding to a subregion A, can be decom-
posed into a sum of operators that describe free fermions.

Specifically, �A ¼ P
fsgPse

�cyhsc, where fsg denotes the

configuration space of certain classical variables ‘‘s’’ to
be introduced below, while the numbers Ps and the matri-
ces hs are fully determined by the underlying Hamiltonian,
and we provide their general form below. This decompo-
sition works for the ground state, as well as for the
thermally averaged reduced density matrix at finite tem-
peratures. Perhaps most interestingly, it allows one to

calculate highly nonlocal quantities, such as the Renyi
entanglement entropies, in an efficient manner with the
DQMC, while employing the analytical techniques which
were available only for the free fermions [16–18]. We
demonstrate the method by numerically calculating the
Renyi entropy S2 for a one-dimensional chain of
Hubbard model and by benchmarking it against the results
from the exact diagonalization. Finally, we also develop a
systematic expansion for the entanglement Hamiltonian of
interacting fermions, which is again calculable within
Monte Carlo simulations.
Since the notion of a fermionic sign problem enters in

our discussion below, we briefly mention the relevant
basics [19,20]. Specifically, in the DQMC technique
[13–15], the interparticle interactions of the fermions are
reexpressed as space-time fluctuating classical fields
coupled to fermion bilinears. This allows one to integrate
out the fermions to obtain a partition function written
solely in terms of the classical fields. For a class of prob-
lems, this partition function is always positive, thereby
allowing one to simulate the original interacting fermionic
system using the classical Monte Carlo techniques. Such
problems are said to be free of the ‘‘fermion sign problem,’’
and our results will be most useful for this same set of
problems. Some of the problems that fall in this class
are the half-filled Hubbard model on bipartite lattices
[13,14,21], certain multi-orbital Hubbard models at any
chemical potential [20,22], regularized interacting Dirac
fermions with even flavors of fermions in the presence of
time-reversal symmetry [19,23–25], SUð2Þ gauge theory
with fundamental fermions at any chemical potential
[19,24,25], and SUðNcÞ QCD with fermions in the adjoint
for any Nc, again at any chemical potential [25,26].
Reduced density matrix in determinantal quantum

Monte Carlo calculations.—Let us recall that the full
density matrix � for a quantum Hamiltonian H at a tem-
perature ��1 is given by
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� ¼ e��H

tr ðe��HÞ ¼
P
i
e��Ei jc iihc ijP

i
e��Ei

; (1)

where jc ii and Ei are the eigenfunctions and eigenvalues
of H. From this, one can define a reduced density matrix
�A by spatially partitioning the total system into subre-
gions A and �A and subsequently tracing over the Hilbert
space of the subregion �A: �A ¼ tr �A�. Furthermore, one can
define entanglement measures such as the von Neumann
entropy SvN ¼ �trð�A log�AÞ and the Renyi entropies
Sn ¼ �½1=ðn� 1Þ� log trð�n

AÞ. Our main interest lies in
finding a numerically tractable expression for the reduced
density matrix �A, and the associated Renyi entropies Sn,
for interacting fermion Hamiltonians. We find that the
technique of DQMC provides a very fruitful conceptual
framework to address this problem.

As already mentioned above, DQMC transforms the
problem of interacting fermions into one of free fermions
coupled to a fluctuating classical field [13–15]. There are
two different versions of this method: a zero temperature
method, which is used for calculating the ground state
properties, and a finite temperature method for the ther-
mally averaged properties. For completeness, we provide
an overview of these two methods in the Supplemental
Material [27]. In brief, both of these schemes involve
Trotter decomposition of the Hamiltonian H of interest
into L� ‘‘time slices’’ and then introduction of auxiliary
classical degrees of freedom ‘‘s’’ to decouple the interact-
ing (i.e., nonquadratic) part of the Hamiltonian. The main
result of this analysis is that one can integrate out the
fermions in favor of the classical fields s, which are now
governed by a known partition function. Returning to the
original fermion problem, the expectation value of any
operator O, with respect to either the ground state or the
thermally averaged one, may be written as [13–15]

hOi ¼ X
fsg
PshOis: (2)

For Hamiltonians without a sign problem, Ps are positive
numbers and have the interpretation of the probability
distribution for the instantaneous configuration s of the
classical variables, while hOis may be thought of as the
expectation value of O with respect to a free fermion
Hamiltonian determined also by the instantaneous configu-
ration ‘‘s.’’ The exact form of Ps and hOis depends on the
original Hamiltonian H [13–15], and the interested reader
may find explicit expressions corresponding to the
Hubbard model in the Supplemental Material [27].

Perhaps most crucially, owing to the aforementioned
relation to the free fermions, the expectation values hOis
can be shown to follow the Wick’s theorem [13,14]. For

example, hcy1c2cy3c4is ¼ hcy1c2ishcy3c4is � hcy1c4ishcy3c2is.
As one might expect, this implies that the single particle
Green’s functionGs, with respect to a fixed configuration s,

defined as Gij
s ¼ hcyj ciis, is sufficient to determine the

expectation value hOis of all operators at a fixed s.
We claim that within DQMC, �A is given by the follow-

ing simple expression:

�A ¼ X
fsg
Ps�A;s; (3)

where

�A;s ¼ Cs;Ae
�cy logðG�1

s;A
�IÞc: (4)

Here, the fermionic creation and annihilation operators
c, cy are restricted to region A, andGs;A is the projection of

the Green’s functionGs to the region A. That is,G
ij
s;A ¼ Gij

s

for i, j 2 A. Cs;A ¼ DetðI�Gs;AÞ is a normalizing coeffi-

cient that ensures tr�A;s ¼ 1.
Proof.—�A;s in Eq. (4) reproduces the single particle

Green’s function Gij
s : trð�A;sc

y
j ciÞ ¼ Gij

s for i, j 2 A. This

is a consequence of the fact that the reduced density matrix
for a free fermionic system [16–18] is given by an expres-
sion identical to Eq. (4), with Gs;A replaced by the actual

Green’s function for the free problem [28]. Now, since the
Wick’s theorem holds for a fixed configuration s, it follows
that hOis ¼ trð�A;sOÞ for all operators O whose support

lies in the subregion A. Therefore,

trð�AOÞ ¼ X
s

Ps trð�A;sOÞ ¼ hOi; (5)

where we have used Eq. (2). The operator �A in Eq. (3) thus
reproduces the expectation value of all operators O with
support in A, and therefore indeed corresponds to the
reduced density matrix for A [29].
Equations (3) and (4) are our main result. They express

the reduced density-matrix of an interacting fermionic
system for arbitrary regions A, as a sum of appropriately
weighted operators that describe auxiliary free fermion
systems. We emphasize that the form of �A in Eq. (3) holds
even for systems that have a fermion sign problem, though
in that case, not all Ps will be positive, making the
Monte Carlo sampling unfeasible at low temperatures.
Renyi entropies Sn—As a concrete application of the

decomposition in Eq. (3), consider the Renyi entanglement
entropy Sn ¼ �½1=ðn� 1Þ� log trð�n

AÞ for n ¼ 2,

S2¼�log

� X
fsg;fs0g

PsPs0 fDetðGs;AGs0;A

þðI�Gs;AÞðI�Gs0;AÞÞg
�
; (6)

where Det denotes matrix determinant. The above expres-
sion can be readily evaluated in the Monte Carlo simula-
tions by sampling the expression inside the fg brackets over
two copies of the system, with the joint probability distri-
bution function PsPs0 . As is evident from the above expres-
sion, just the knowledge of the single particle’s Green’s
function Gs in the DQMC is sufficient to determine the
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Renyi entropy S2 (or, for that matter, any Renyi entropy Sn
by a straightforward generalization [30]). This is rather
different than the calculation of the Renyi entropies in the
bosonic Monte Carlo simulations [9], or in the variational
Monte Carlo simulations [10], where one is required to
sample a highly nonlocal quantity (‘‘swap operator’’) to
calculate the Renyi entropy.

Implementation.—One of the attractive features of our
algorithm is that it does not require any technical ingre-
dients beyond the DQMC, because the probability distribu-
tionPs, and the Green’s functionGs are exactly the same as
the ones that enter the conventional DQMC algorithm. The
cost of our algorithm to calculate Renyi entropies
Sn scales as N3L�, where N is the number of particles
and L� is the number of time slices, akin to the calculation
of ground state energy or correlation functions in the
DQMC [13–15].

We benchmarked the algorithm by calculating S2 for the
ground state of a one-dimensional chain of ten sites with the

Hamiltonian H¼�t
P

�;ijðcyi�cj�þcyj�ci�ÞþU
P

ini"ni#.
Figure 1 shows the comparison of S2 obtained from a
projector Monte Carlo scheme with the results from exact
diagonalization for three different values of the HubbardU.
Clearly, the algorithm reproduces the correct result rather
accurately. This example and other test runs (see the
Supplemental Material [27]) suggest that S2 should be
calculable to an accuracy of a few percent with 107

Monte Carlo sweeps for subsystems of linear length around
ten lattice spacings in two dimensions.

Entanglement Hamiltonian.—The method presented
allows one to also obtain an expression for the interact-
ing entanglement Hamiltonian [3]. The entanglement

Hamiltonian is defined as �A ¼ e�H A . For a generic inter-
acting system, it is rather difficult to obtain a closed form
expression for H A as a second-quantized operator.
Bosonic Monte Carlo techniques [9] can only access
Renyi entropies, while purely analytical techniques are as
yet limited to free bosons or fermions [16–18], in which
case H A is quadratic, or they include the effect of inter-
actions via the renormalization of H A that is still qua-
dratic [31]. We now show that for models that can be
simulated via DQMC, a systematic expansion for H A

can be obtained, which includes all interactions and is
calculable within the Monte Carlo simulation. Let us re-
write the expression for the interacting density matrix as

�A ¼ X
fsg
Pse

�cyhsc; (7)

where hs is a matrix with components hijs ¼ðlogðG�1
s �

IÞÞij, and we have dropped a constant shift to hs. A cumu-
lant expansion on �A yields H A,

H A ¼ X
ij

hijcyi cj þ
X
ijkl

kijklcyi cjc
y
k cl þ � � � ; (8)

where hij ¼ P
fsgPsh

ij
s and kijkl¼ð1=2Þ½Pfsg;fs0gPsPs0�

hijs hkls0 �
P

fsgPsh
ij
s hkls �. One can similarly write down

the higher-order terms. As the above expressions show,
the numbers hij and kijkl can be sampled within the
Monte Carlo simulation in an efficient manner, and thus
we have obtained a systematically calculable expression
for the interacting entanglement Hamiltonian.
Discussion.—Leaving aside interactions, even the free

fermions have a rather peculiar ground state entanglement,
S� Ld�1

A logLA, where LA is the linear extent of the entan-

gling surface [32,33], and the prefactor is a universal num-
ber that only depends on the shape of the Fermi surface
and the entangling region. This is in contrast to almost all
other known systems, where the entanglement scales as
S� Ld�1

A , the so-called area law [34,35]. Does a similar

violation of area law hold for strongly interacting systems
that do not have electronlike quasiparticles [10,36]? Such
questions are potentially addressable in the sign-free mod-
els, such as the one studied in Ref. [37] using the algorithm
presented here. On this note, it is worth mentioning that
there is a large class of problems that do not have a fermion
sign problem even at a finite density of fermions, including
multiorbital Hubbard models [19,20,22]. These models
provide a platform to test Widom’s conjecture [32,33,38]
in Fermi liquids [11,39]. Furthermore, for a single-orbital
Hubbard model at half-filling on bipartite lattices, one can
study the effect of more generic interactions, for example,
spin-orbit coupling [40,41] or the nearest neighbor inter-
actions [21].

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

L
A

S
2

 

 

U = 0.5, Monte Carlo
U = 0.5, Exact
U = 1.0, Monte Carlo
U = 1.0, Exact
U = 2.0, Monte Carlo
U = 2.0, Exact

FIG. 1 (color online). Renyi entropy S2 for the ground state
of a ten-site single-band Hubbard model with periodic boundary
conditions, as a function of subsystem size LA. The three differ-
ent plots correspond to three different values of the Hubbard
U (with t ¼ 1).
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Another direction of interest might be to explore the
entanglement structure of fermionic systems close to the
Mott transition [42]. Such systems can exhibit rich physics
including quantum criticality and/or exotic phases [43,44].
A sign-problem-free example is the honeycomb Hubbard
model [45–47]. It has been shown recently [46,47] that this
model exhibits a second-order Mott transition from a semi-
metal to an antiferromagnet. The behavior of the Renyi
entropy can potentially serve to further characterize the
critical point. Indeed, the universal entanglement footprints
of a quantum critical point are rather distinctive—for a
subsystem of size LA and a fixed shape, the Renyi entropy
at a 2þ 1-dimensional relativistic critical point scales as
S2 ¼ �LA � CþOð1=LAÞ, where C is a shape-dependent
universal number [7,8]; this is in contrast to topological
ordered systems [1,2], where the analog of C (topological
entanglement entropy) is shape independent. Similar con-
siderations apply to the sign-problem-free multiorbital
Hubbard model studied in Ref. [48], where evidence was
provided for an exotic algebraic spin-liquid phase [49,50].
Another as yet unexplored territory is the quantum entan-
glement in heavy fermionic systems [51,52], where the
Kondo screening competes with the magnetic interactions.
The method is also directly applicable to several lattice
matter-gauge theories [19,24,25] and could be useful, for
example, in exploring the possibility of topological super-
conductivity in SUð2Þ matter-gauge theory [24,25,53].
One can also study entanglement in sign-problem-free
spin systems, such as the spin-1=2 Heisenberg model
on the square lattice, by studying the large U limit of
the Hubbard model at half-filling. This will provide an
alternate viewpoint as compared to the bosonic
Monte Carlo simulation [9].

Finally, we note that the expansion in Eq. (8) for H A

might help in understanding which specific interacting
systems have a (non) local entanglement Hamiltonian.
The problem of determining the locality ofH A for a given
problem has been essentially reduced to understanding the
locality of the average hhsi with respect to the probability
distribution Ps. The expansion for H A is also suggestive
of an area law scaling for the entanglement entropy S�
Ld�1
A , up to multiplicative logarithmic corrections [32,33],

for the ground states of d dimensional systems that can be
simulated without a sign problem. This is because the
contribution of the first term in the expansion, hhsi, to the
entanglement entropy is likely to be an area law, again up
to multiplicative logarithmic corrections, because the indi-
vidual terms hs themselves correspond to free fermion
problems, and the averaging converges due to the lack of
a sign problem. This would imply that h behaves essen-
tially as a d� 1-dimensional system, and thus the contri-
bution to the entanglement entropy from higher-order
terms in the expansion can be expected to scale in a similar
fashion. This argument is by no means rigorous, and we
leave such explorations for the future.

Before closing, we note that even though the method
presented can access the Renyi entropies Sn for integer
n, we presently do not know how to calculate the
von Neumann entropy SvN, a challenge open to other
Monte Carlo schemes as well [9,10].
To summarize, we showed that the reduced density

matrix for interacting fermions can be expressed rather
simply in terms of free fermions, and we used this fact to
develop an algorithm to calculate the Renyi entanglement
entropies, and the entanglement Hamiltonian, for interact-
ing fermionic systems in general dimensions. Our method
provides an information-theoretic reformulation of the
DQMC method, while opening a pathway to explore
many-body entanglement in strongly correlated fermionic
systems.
I thank Matthew Fisher and Max Metlitski for useful

discussions and Brian Swingle, Bryan Clark, and Madhav
Mani for helpful comments on the draft. This research was
supported in part by the National Science Foundation
under Grant No. NSF PHY11-25915.
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