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The dynamics of two-dimensional fluids confined within a random matrix of obstacles is investigated

using both colloidal model experiments and molecular dynamics simulations. By varying fluid and matrix

area fractions in the experiment, we find delocalized tracer particle dynamics at small matrix area

fractions and localized motion of the tracers at high matrix area fractions. In the delocalized region, the

dynamics is subdiffusive at intermediate times, and diffusive at long times, while in the localized regime,

trapping in finite pockets of the matrix is observed. These observations are found to agree with the

simulation of an ideal gas confined in a weakly correlated matrix. Our results show that Lorentz gas

systems with soft interactions are exhibiting a smoothening of the critical dynamics and consequently a

rounded delocalization-to-localization transition.
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Introduction.—Understanding the dynamics in disor-
dered heterogeneous media is of great interest for fields
like materials science, geophysics, or biology [1–3]. The
mass transport in such media is associated with a strong
separation of time scales, i.e., mobile particles that move
through a ‘‘matrix of immobile’’ particles. Experimental
realizations of such systems are binary mixtures of colloids
with disparate sizes [4,5], ion-conducting glasses [6–10],
or biological systems like cells [3].

To model such heterogeneous systems, one often treats
the matrix particles as fixed. One of the simplest models
is the disordered Lorentz gas [11,12] where a tracer
particle moves in a matrix of fixed, randomly distributed,
overlapping hard spheres. This model exhibits a
delocalization-to-localization transition associated with
the critical percolation point [13] of the void space. At
low matrix densities, the void space is a percolating
network leading to diffusive tracer motion, but it
becomes disconnected above the critical percolation den-
sity, and the tracer is trapped in finite pockets of void
space. At the critical point, the long-time diffusion is
anomalous [14–16], characterized by a sublinear depen-
dence of the mean squared displacement (MSD) on time,
�r2ðtÞ � tx with x � 2=3:036 in two dimensions (2D)
[16] and x � 0:32 in 3D [15].

It is an open question as to whether the Lorentz gas
scenario is also relevant in complex media such as ion
conductors or porous materials. Simulations have reported
anomalous diffusion and localization dynamics in various
more realistic heterogeneous systems such as binary mix-
tures with a frozen-in component [17–22] or a disparate
size ratio [23] and realistic models of ion-conducting alkali
silicate glasses [8]. These studies are corroborated by mode
coupling theory calculations [24], which provide a quali-
tative description of the Lorentz gas [25] and predict

localization transitions for disparate-sized binary mixtures
[26] and quenched-annealed systems [27–30].
While models like the Lorentz gas are insightful, experi-

mental realizations of systems with fixed, randomly placed
matrix particles are very rare. Most experimental studies of
diffusion in disordered media have been reported for
porous glasses [31] where systematically varying the
pore size distribution is very difficult. In this Letter, we
present a 2D colloidal model experiment consisting of
small tracer particles in a random confining matrix of fixed
large particles. The experimental setup enables in situ
control of the area fractions of the fluid and matrix particles
without changing the matrix configuration, which is crucial
for studying the localization dynamics in random media.
The experiment exhibits delocalized tracer dynamics at
low matrix area fractions and highly localized tracer mo-
tion at high matrix area fractions. Our experimental
findings are supported by molecular dynamics (MD) simu-
lations of a 2D soft sphere binary mixture with the large
species being fixed and the small species forming an ideal
fluid of noninteracting particles. The simulations indicate
that the experimental localization transition is rounded due
to the soft interactions, which lead to a distribution of
energies of the tracers and finite barriers in the matrix.
This is qualitatively different from the sharp localization
transition in the Lorentz gas.
Experiment.—A mixture of 3.9 and 4:95 �m diameter

superparamagnetic colloidal polystyrene spheres
(Microparticles GmbH) in water is confined between two
glass slides to make a 2D sample cell [Fig. 1(a)]. The large
particles act as spacers and hence form the fixed matrix in
which the small particles—the fluid—are free to move
[32]. Video microscopy is used to image an area of
430 �m� 340 �m for up to 2 h. Standard tracking rou-
tines are used to find the matrix and fluid particle
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coordinates [33] as a function of time from which we
computed the static and dynamics quantities of interest.

In the experiments, we prepared three different samples
which are represented by the three lines denoted line 0, 1,
and 2 in the state diagram in Fig. 1(b). Each line, i.e.,
sample, corresponds to a different matrix configuration,
and the lowest state point along each line is characterized
by the hard sphere area fractions of the matrix (�0

M) and

the fluid (�0
F) particles and is thus achieved without

the presence of a magnetic field. The lowest state point
of each line is labeled as ‘‘L1P1’’ for line 1, for example.
To achieve higher effective packing fractions �F;M,

we apply a perpendicular external magnetic field B
which leads to a repulsive pair potential given by
UF;MðrÞ ¼ �0�

2
F;MB

2=ð4�r3Þ. Here, r is the distance

between two particles, �0 the permeability of free
space, and �F;M the magnetic susceptibility of the

fluid or matrix particles. The state points with the
magnetic field present are, e.g., ‘‘L1P2; . . . ;L1P6’’ for
line 1. To represent these state points in the (�M, �F)
state diagram, we calculate the effective hard sphere
diameters �F;M using a Barker-Henderson approach:

�F;M ¼ �0
F;M þ R1

�0
F;M

ð1� e��UF;MðrÞÞdr, where �0
F;M are

the hard sphere diameters and � ¼ 1=kBT [34,35]. If
B ¼ 0, �F;M reduces to �0

F;M, which corresponds to the

lowest state point along each line. Note that the effective
matrix to fluid particle size ratio remains fairly constant at
0.787, as is evident from the linear paths in the (�F, �M)
state diagram [Fig. 1(b)].

The key point of our approach is that we in situ control
the effective area fractions without changing the matrix
configuration, so that we can very efficiently probe the
tracer dynamics at different effective matrix and fluid
area fractions. Importantly, we retain the random character
of the matrix even at very high effective area fractions,
which is crucial for studying the localization dynamics in

random media and comparing it to the Lorentz gas. In our
analysis of the tracer dynamics, we will focus on the state
points along lines 1 and 2. The experimental data are
averaged over up to five independent matrix configurations
by imaging different parts of each sample.
First, we characterize the structural correlations

of the matrix by computing its static structure factor

SðkÞ ¼ 1
NM

hPNM

i¼1

PNM

j¼1 e
�i ~k�ð ~ri� ~rjÞi. Here, NM is the number

of matrix particles, the angled brackets represent an en-
semble average, and ~ri and ~rj are the positions of matrix

particles i and j, respectively. The matrix structure factors
corresponding to lines 0, 1, and 2 only show weak fluidlike
structural correlation [Fig. 1(c)], similar to the uncorrelated
Lorentz model. Note that the structure factors do not
change along each line, which is a direct consequence of
increasing the effective area fractions by increasing B.
Importantly, it also directly confirms that the matrix parti-
cles are fixed.
We analyze the fluid particle dynamics by

computing the mean squared displacement

�r2ðtÞ ¼ 1
NF

hPNF

i¼1½~riðtÞ � ~rið0Þ�2i, with NF the number of

fluid particles and ~ri the position of fluid particle i. The
MSDs along lines 1 and 2 are shown in Fig. 2(a). Note that
the difference in the short-time diffusion is due to the
different number densities [36,37] and that diffusion is
well defined in 2D systems with fixed obstacles [16]. At
L1P1, characterized by low matrix and low fluid area
fractions, the tracer dynamics is diffusive at long times.
Upon increasing the effective area fractions �F and �M

along line 1, the dynamics shows a noticeable slowing
down and strongly subdiffusive behavior at intermediate
times. However, at long times, the MSDs of all the state
points along line 1 exhibit diffusive behavior, correspond-
ing to delocalized motion. Consistently, delocalized mo-
tion is observed at all state points along line 0, i.e., at lower
matrix area fractions (data not shown). In contrast, the fluid
particle dynamics exhibits completely different behavior
along line 2, i.e., at much higher matrix area fractions. At
L2P1, theMSD plateaus at long times, which upon increas-
ing �F and �M along line 2, decreases to smaller values.
This behavior clearly indicates the localization of the
tracers in this region of the state diagram and shows that
the length scale associated with the localization becomes
smaller as the matrix area fraction is increased.
Simulation.—To gain more insight into the mechanism

of the experimentally observed localized tracer dynamics,
we perform detailed MD simulations of a quenched-
annealed system: a binary system of purely repulsive soft
spheres with the Weeks-Chandler-Andersen interaction
potential [38], where the matrix particles are fixed. In
particular, we simulate the tracer dynamics in the limit of
�F ! 0, while we systematically increase the matrix area
fraction, which enables us to efficiently sample the regions
corresponding to both delocalized and localized tracer
dynamics. Importantly, we do not aim to achieve
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FIG. 1 (color online). (a) The sample cell with the matrix
particles acting as spacers. (b) State diagram for the effective
area fractions of the fluid (�F) versus the matrix particles (�M).
(c) Structure factors of the matrix configurations for lines 0, 1,
and 2 and the simulation.
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quantitative agreement between the experiments and the
simulations. This is prohibitively difficult as—among
other things—one would have to include hydrodynamic
interactions and account for the change of the softness of
the potential with the magnetic field. Instead, we feel that it
is far more instructive to perform simulations with a differ-
ent soft interaction potential and hence reveal generic
features of the localization dynamics in Lorentz gas sys-
tems with soft interactions.

The parameters of the system and the MD simulation are
set as in Ref. [23], except that the tracer interaction is
turned off to avoid the effect of fluid-fluid interaction on
the dynamics. The matrix particle diameters are sampled
equidistantly �M 2 ½0:85; 1:15� to avoid crystallization.
For each realization of the system, between 1000 and
4000 matrix particles are equilibrated at number density
� ¼ 0:278��2

M at the temperature kBT ¼ 1 by randomly
selecting their velocities from the Maxwell distribution
every 100 steps, for 105 time steps. Then, the matrix
particles are fixed and their positions are uniformly
rescaled to � ¼ 0:625��2

M . The computed quantities are
averaged over 100 independent matrix configurations. To
simulate the tracer dynamics, we insert up to 1000 non-
interacting fluid particles into each matrix configuration.
We vary the tracer diameter �F, which is equivalent to
varying the matrix area fraction without changing the
structure of the matrix, analogous to the experiments.
Varying the system size L allows us to control finite size
effects, which only start to play a role after the MSD
exceeds � ðL=2Þ2, as indicated in Fig. 2(b).

Comparison between simulation and experiment.—As in
the experiments, the structure factor of the simulated
matrix only shows weak fluidlike structural correlations
[Fig. 1(c)]. In the simulations, we consider two cases: the

tracers have either the same or a distribution of energies. In
the first case, the tracers are given the same energy by first
determining the average energy during equilibration and
then re-inserting them such that the energy of each tracer
equals the average energy. The simulations then reproduce
the Lorentz model, as is evident from the MSD of the
tracers for different values of �F [dashed lines in
Fig. 2(b)]. In the long-time limit, the MSD changes from
diffusive at small �F to localized at large �F with an
extended subdiffusive regime at intermediate times. The
localization-delocalization transition occurs approxi-
mately at ��

F ¼ 0:43 (see the inset), where the MSD
asymptotically approaches a power law �r2 � tx with
x � 2=3:036, in agreement with the Lorentz model [16].
The experimental system, however, is not an ensemble

of tracers with the same energy but exhibits a broad dis-
tribution of tracer energies. Moreover, the barriers between
the pores in the matrix are of finite height due to the soft
interactions, which allows tracers with high energy to
overcome barriers that cannot be surpassed by low-energy
tracers. As a consequence, tracers with different energies
have different critical points, which necessarily leads to an
averaging of the dynamics: the localization transition is
expected to be rounded, and hence the Lorentz model
exponent cannot be measured in our experiments. To dem-
onstrate this effect, we consider the second case and simu-
late a system where the tracers form an ideal gas, which is
the simplest system of tracers with a distribution of ener-
gies. For comparison to the single-energy case, the average
energy per tracer particle is kept the same. The ideal gas
MSDs [solid lines in Fig. 2(b)] clearly differ from the
single-energy case (dashed lines) at long times. The dif-
ference is most striking at �F ¼ 0:6, where the single-
energy system is clearly localized, while the ideal gas
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system still shows diffusion at long times, as a substantial
subset of the particles has high enough energies to be
delocalized.

Our simulations thus show that Lorentz gas systems with
soft interactions—as our experimental system—exhibit a
rounded delocalization-to-localization transition. This
can also be inferred from the experimental data in
Fig. 2(a): the tracers at state point L1P6 are still diffusive
at long times, while at state point L2P1, which has a
comparable �M but a far lower �F, the tracers are local-
ized. This is a direct consequence of the potential at high
magnetic fields (L1P6) being much softer, which leads to a
rounding of the localization transition, whereas L2P1 is
characterized by a far harder potential and less rounding of
the localization transition.

To further corroborate our findings, we also compute
the self-part of the van Hove correlation function Gsðr; tÞ,
as it gives the full spatial information for the tracer
particle dynamics at a given time. This function gives
the distribution of displacements �ri¼j~riðtÞ� ~rið0Þj of a
tagged particle i at time t: Gsðr;tÞ¼ 1

NF
hPNF

i¼1�ðr��riÞi
[39]. In Fig. 3(a), we show the experimental Gsðr; tÞ for
L1P1 and L1P6 at times t ¼ 250 s and t ¼ 3000 s. The
lower time (250 s, solid lines) roughly corresponds to the
time where subdiffusion is strongest, while the larger
time (3000 s, dashed lines) marks the end of the experi-
mental runs. The delocalized nature of the tracers at low
area fractions is reflected by the broad distribution at
L1P1 and its time dependence: the width increases by a
factor of 3 from t ¼ 250 s to t ¼ 3000 s. At point L1P6,
the shape of Gsðr; tÞ is very similar compared to L1P1
but the distributions are narrower at both times, reflecting
the much higher effective area fractions. The Gsðr; tÞ’s
for L2P1 and L2P4 are shown in Fig. 3(b). Although
the fluid particles at L2P1 are localized, which can
only be inferred here from the time dependence, i.e.,
from the MSD, the Gsðr; tÞ is fairly similar to that of

L1P6—despite the fact that L2P1 is characterized by a
far lower fluid area fraction. The very narrow Gsðr; tÞ and
the absence of any shift when changing from t ¼ 250 s
to t ¼ 3000 s indicates a strong localization at L2P4.
In Figs. 3(c) and 3(d), we showGsðr; tÞ for the simulated

confined ideal gas at three times, where the values of the
MSD roughly agree with those of the experiment: t � 3t0,
t � 39t0, and an additional time that is an order of magni-
tude larger t � 550t0. The shape of Gsðr; tÞ of the simula-
tion at �F ¼ 0:2 [Fig. 3(c)] matches the Gsðr; tÞ of L1P1
[Fig. 3(a)] well. As �F increases, Gsðr; tÞ in the simulation
undergoes the same qualitative development as in the
experiment. On the localized side [�F ¼ 0:9, Fig. 3(d)],
a very narrow distribution is observed that shows virtually
no change with time, except from a small broadening
which qualitatively matches the experimental data at
L2P1 and L2P4. The general agreement between experi-
ment and simulation also shows that fluid-fluid interactions
are not important in the experiment. This is additionally
indicated by the fact that there is no sign of particle
hopping in the experimental Gsðr; tÞ which would result
in peaks or shoulders at distances comparable to the
nearest-neighbor distance between two tracer particles
[note that the quantity 2�rGsðr; tÞ also does not show
such a feature] [8,18].
Conclusion.—We have studied the localization dynam-

ics of two-dimensional fluids confined in a random matrix
using colloidal experiments and molecular dynamics simu-
lations. In the experiments, mean squared displacements
and van Hove correlation functions show signatures of
delocalized tracer dynamics at low matrix area fractions
and localized motion at high matrix area fractions. In
particular, we observe long-time diffusion at small matrix
area fractions, while trapping in finite pockets of the matrix
is present at high matrix area fractions. The molecular
dynamics simulations show that the soft interactions in
our colloidal model system, which give rise to an energy
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distribution for the tracer particles, smoothen the critical
dynamics and enhance the diffusivity, leading to a rounded
localization transition. Our results show that the smooth-
ening of the critical dynamics does not depend on the
details of the interaction potential, which suggests that
the rounding of the localization transition is a generic
feature of realistic systems.
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T. Franosch, Soft Matter 9, 1604 (2013).

[26] T. Voigtmann, Europhys. Lett. 96, 36 006 (2011).
[27] V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005).
[28] V. Krakoviack, Phys. Rev. E 75, 031503 (2007).
[29] V. Krakoviack, Phys. Rev. E 79, 061501 (2009).
[30] V. Krakoviack, Phys. Rev. E 84, 050501 (2011).
[31] M. C. Bellissent-Funel, J. Lal, and L. Bosio, J. Chem.

Phys. 98, 4246 (1993).
[32] G. Cruz de León, J.M. Saucedo-Solorio, and J. L. Arauz-

Lara, Phys. Rev. Lett. 81, 1122 (1998).
[33] J. C. Crocker and D.G. Grier, J. Colloid Interface Sci. 179,

298 (1996).
[34] J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714

(1967).
[35] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic, London, 2006).
[36] X. Qiu, X. L. Wu, J. Z. Xue, D. J. Pine, D.A. Weitz, and

P.M. Chaikin, Phys. Rev. Lett. 65, 516 (1990).
[37] Y. Peng, W. Chen, T.M. Fischer, D. A. Weitz, and P. Tong,

J. Fluid Mech. 618, 243 (2009).
[38] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.

Phys. 54, 5237 (1971).
[39] K. Binder and W. Kob, Glassy Materials and Disordered

Solids (World Scientific, Singapore, 2011).

PRL 111, 128301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

128301-5

http://dx.doi.org/10.1103/RevModPhys.65.1393
http://dx.doi.org/10.1126/science.273.5278.1054
http://dx.doi.org/10.1088/0034-4885/76/4/046602
http://dx.doi.org/10.1088/0034-4885/76/4/046602
http://dx.doi.org/10.1103/PhysRevE.52.6344
http://dx.doi.org/10.1103/PhysRevE.52.6344
http://dx.doi.org/10.1103/PhysRevLett.75.1662
http://dx.doi.org/10.1103/PhysRevLett.75.1662
http://dx.doi.org/10.1038/267673a0
http://dx.doi.org/10.1016/S0167-2738(97)00444-X
http://dx.doi.org/10.1016/S0167-2738(97)00444-X
http://dx.doi.org/10.1103/PhysRevLett.88.125502
http://dx.doi.org/10.1103/PhysRevLett.88.125502
http://dx.doi.org/10.1209/epl/i2006-10012-2
http://dx.doi.org/10.1209/epl/i2006-10012-2
http://dx.doi.org/10.1088/0034-4885/72/4/046501
http://dx.doi.org/10.1103/RevModPhys.54.195
http://dx.doi.org/10.1103/PhysRevLett.96.165901
http://dx.doi.org/10.1103/PhysRevLett.96.165901
http://dx.doi.org/10.1140/epjst/e2010-01313-1
http://dx.doi.org/10.1103/PhysRevLett.103.138303
http://dx.doi.org/10.1103/PhysRevLett.103.138303
http://dx.doi.org/10.1103/PhysRevE.82.041505
http://dx.doi.org/10.1103/PhysRevE.82.041505
http://dx.doi.org/10.1088/0953-8984/23/23/234122
http://dx.doi.org/10.1088/0953-8984/23/23/234122
http://dx.doi.org/10.1209/0295-5075/88/36002
http://dx.doi.org/10.1209/0295-5075/88/36002
http://dx.doi.org/10.1140/epjst/e2010-01315-y
http://dx.doi.org/10.1140/epjst/e2010-01315-y
http://dx.doi.org/10.1088/0953-8984/23/23/234123
http://dx.doi.org/10.1088/0953-8984/23/23/234123
http://dx.doi.org/10.1103/PhysRevLett.103.205901
http://dx.doi.org/10.1103/PhysRevLett.103.205901
http://dx.doi.org/10.1039/c2sm27060a
http://dx.doi.org/10.1209/0295-5075/96/36006
http://dx.doi.org/10.1103/PhysRevLett.94.065703
http://dx.doi.org/10.1103/PhysRevE.75.031503
http://dx.doi.org/10.1103/PhysRevE.79.061501
http://dx.doi.org/10.1103/PhysRevE.84.050501
http://dx.doi.org/10.1063/1.465031
http://dx.doi.org/10.1063/1.465031
http://dx.doi.org/10.1103/PhysRevLett.81.1122
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1063/1.1701689
http://dx.doi.org/10.1063/1.1701689
http://dx.doi.org/10.1103/PhysRevLett.65.516
http://dx.doi.org/10.1017/S0022112008004114
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1063/1.1674820

