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We study the time evolution of the entanglement entropy of a one-dimensional nonintegrable spin

chain, starting from random nonentangled initial pure states. We use exact diagonalization of a non-

integrable quantum Ising chain with transverse and longitudinal fields to obtain the exact quantum

dynamics. We show that the entanglement entropy increases linearly with time before finite-size saturation

begins, demonstrating a ballistic spreading of the entanglement, while the energy transport in the same

system is diffusive. Thus, we explicitly demonstrate that the spreading of entanglement is much faster than

the energy diffusion in this nonintegrable system.
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Entanglement is one of the unique features of quantum
mechanics that does not exist in classical physics.
Originally, quantum entanglement was viewed with some
skepticism [1,2], but recently, the study of entanglement
has become a central part of many-body quantum physics
and quantum information science. Despite impressive
recent progress in understanding entanglement from vari-
ous viewpoints, many of its aspects remain to be further
explored.

One natural question about entanglement is its quantum
dynamics under unitary time evolution. If one starts an
isolated quantum system in a nonentangled initial product
pure state, how does the entanglement grow with time?
Entanglement is not a conserved quantity like energy, that
is transported. Instead, it is more like an infection or
epidemic [3] that multiplies and spreads. An initial state
that is a product state has the information about the initial
state of each local degree of freedom (spins in our model
below) initially localized on that degree of freedom. Under
the system’s unitary time evolution, quantum information
about each spin’s initial state can spread with time to other
spins, due to the spin-spin interactions. This can make
those spins that share this information entangled.

In real physical systems, information and entanglement
can spread as fast as the speed of light (or sound). For a
lattice spin model, which lacks propagating light or sound,
an upper limit on the speed of any information spread
is given by the Lieb-Robinson bound, which is set by
the spin-spin interactions [4] (for recent reviews, see
Refs. [5,6]). For integrable one-dimensional models, the
entanglement does indeed spread ballistically [7–9], which
is to be expected since such systems have ballistically
propagating quasiparticles that can serve as carriers of
the information. For various localized models, on the other
hand, the entanglement has been shown to spread much
more slowly, only logarithmically with time [8,10–16].
In the present Letter, we consider an intermediate case, a
quantum Ising spin chain that is neither integrable nor
localized, whose energy transport is diffusive.

Here, we investigate the spread of entanglement in a
diffusive nonintegrable system, at high temperature where
there are no ballistically propagating quasiparticles and the
only conserved quantity is the energy which moves diffu-
sively [17]. Diagonalizing the entire Hamiltonian matrix,
we numerically study the time evolution of the entangle-
ment and the diffusive dynamics of energy transport for
highly excited thermal states of the system. We show that
the entanglement spreads ballistically, while the energy
moves only diffusively and thus slowly. Although we
choose a specific model Hamiltonian to study the quantum
dynamics, this result should be valid generally for non-
localized and nonintegrable systems that do not have
ballistically propagating quasiparticles or long-wavelength
propagating modes such as light or acoustic sound.
As a simple nonintegrable model Hamiltonian, we

choose a spin-1=2 Ising chain with both transverse and
longitudinal fields. The model is translationally invariant,
except at the ends of the chain, which we leave open.
Leaving the ends open allows the longest distance within
the chain to be its full length, so we can study energy
transport over that distance and the spread of bipartite
entanglement from the center of the chain to its ends. If
we had used periodic boundary conditions instead, the
longest distances that we could study would be cut in
half. Given the limited lengths that one can study with
exact diagonalization, this factor of 2 is quite important.
Our Hamiltonian is

H¼XL
i¼1

g�x
i þ

XL�1

i¼2

h�z
i þðh�JÞð�z

1þ�z
LÞþ

XL�1

i¼1

J�z
i�

z
iþ1:

(1)

�x
i and �z

i are the Pauli matrices of the spin at site i.
After searching a bit in the space of parameters to see
where we have both fast entanglement spread and slow
energy diffusion and none of the terms singly dominates
the energy spectrum, we chose the longitudinal field

h ¼ ð ffiffiffi
5

p þ 1Þ=4 ¼ 0:8090 . . . and the transverse field
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g ¼ ð ffiffiffi
5

p þ 5Þ=8 ¼ 0:9045 . . . and set the interaction J¼1
(and also set the Planck constant @ to one); all results
reported here are for these values. Our qualitative results
and conclusions do not depend on these parameter choices
as long as g, h, and J are all of similar magnitude to each
other to keep the system robustly nonintegrable [18]. Note
that the magnitude of the energy ‘‘cost’’ to flip a spin in the
bulk, from the applied longitudinal field and its interactions
with its neighbors, is 2h or 4J � 2h. To keep the end sites
similar in this respect to the bulk, we reduce the strength of
the longitudinal field on the end spins by J. This is to avoid
having some slow low-energy modes near the ends that
introduced small additional finite-size effects when we
also applied the same magnitude of longitudinal field to
the end spins.

This Hamiltonian has one symmetry, namely, inverting
the chain about its center. We always work with even L, so
the center of the chain is on the bond between sites L=2 and
ðL=2Þ þ 1. This symmetry allows us to separate the sys-
tem’s state space into sectors that are even and odd under
this parity symmetry and diagonalize within each sector
separately. Any mixed parity state can be obtained from a
linear combination of even and odd parity states. The
statistics of energy-level spacings within each parity sector
of this nonintegrable Hamiltonian should follow Gaussian
orthogonal ensemble statistics [19]. There are 32 896 en-
ergy levels in the even sector for L ¼ 16, the largest system
we have diagonalized. Their level spacing statistics is
in excellent agreement with the ‘‘r test’’ introduced in
Ref. [20] and the Wigner-like surmise described in
Ref. [21], as expected, indicating that this is indeed a
robustly nonintegrable model with no extra symmetries
(see the Supplemental Material [18]).

First, we consider the time evolution of the bipartite
entanglement across the central bond between the two
halves of the chain. We quantify the entanglement entropy
in bits using the von Neumann entropy SðtÞ ¼
�tr½�AðtÞlog2�AðtÞ� ¼ �tr½�BðtÞlog2�BðtÞ� of the proba-
bility operators (known as reduced density matrices) at
time t of either the left half (A) or the right half (B) of
the chain. As initial states, we consider random product
states (with thus zero initial entanglement) jc ð0Þi ¼
js1ijs2i . . . jsLi, where each spin at site i initially points
in a random direction on its Bloch sphere

jsii ¼ cos

�
�i
2

�
j"ii þ ei�i sin

�
�i
2

�
j#ii; (2)

where �i 2 ½0; �Þ and�i 2 ½0; 2�Þ. Such an initial state is
in general neither even nor odd and thus explores the entire
Hilbert space of the pure states as it evolves with unitary
Hamiltonian dynamics. This ensemble of initial states
maximizes the thermodynamic entropy and thus corre-
sponds to infinite temperature. For each time t, we generate
200 random initial product states, let them evolve to time
t, compute SðtÞ for each initial state, and then average.

By doing so, the standard error at each time is uncorrelated.
The results are shown in Fig. 1. Ballistic linear growth of
SðtÞ at early time is clearly seen, and the growth rate before
the saturation is independent of L. (Note that there is an
even earlier time regime at t � 1 where the entanglement
initially grows as �t2j logtj; this regime is just the initial
development of some entanglement between the two spins
immediately adjacent to the central bond.)
In the long-time limit, the time evolved state, on aver-

age, should behave like a random pure state (a random
linear combination of product states). In Ref. [22], it is
shown that the average of the entanglement entropy of
random pure states is

SR ¼ log2m� m

2n ln2
�O

�
1

mn

�
; (3)

where m and n are the dimension of the Hilbert space in

each subsystem, with m � n. Since m ¼ n ¼ 2L=2 in our

FIG. 1 (color online). (a) Spreading of entanglement entropy
SðtÞ for chains of length L. Initially, the entanglement grows
linearly with time for all cases, with the same speed v ffi 0:70.
Then, the entanglement saturates at long time. This saturation
begins earlier for smaller L, as expected. The linear fit function
is fðtÞ ¼ 0:70t. Standard error is less than 0.04 for all points, and
thus the error bars are only visible at early times. (b) Same data
scaled by the infinite-time entropy for each L. Note that we use
logarithmic scales both here and in Fig. 2.
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case, SR ’ L=2 in the large L limit. This limiting value
indicates that the entanglement spreads over the entire
subsystem of length L=2. Therefore, before saturation
begins, we can interpret SðtÞ (in bits) as a measure of the
distance over which entanglement has spread and its
growth rate thus as the speed of the ballistic entanglement
spreading. It is clear from Fig. 1(a) that at long time
(t > 20� 100 depending on the system size), SðtÞ satu-
rates close to SR. We find that the deviation of the satura-
tion value from L=2� 1=ð2 ln2Þ [Eq. (3)] is small (� 0:19
for L ¼ 8 and �0:11 for L ¼ 16; see Fig. 7 of the
Supplemental Material [18]). Since the entanglement en-
tropy saturates because of the finite length L, this deviation
from SR is a correction to the leading finite-size effect,
which should be negligible in the thermodynamic limit.

This behavior suggests the finite-size and finite-time
scaling form for the entanglement entropy:

SðtÞ � SLð1ÞFðt=SLð1ÞÞ; (4)

where SLð1Þ is the infinite-time average value of the
entanglement entropy [23] for chain length L, the scaling
function FðxÞ � vx for x ! 0 (v is the spreading rate), and
FðxÞ ! 1 for x ! 1. Figure 1(b) confirms that this scaling
works well.

Now, let us consider the diffusive dynamics of this
system. As an example, we study the diffusive spreading
of an initially localized energy inhomogeneity. First, we
prepare the system in the maximal thermodynamic entropy
mixed state (equilibrium at infinite temperature) and put a
small energy perturbation on the center bond. Then, we
observe how this extra local energy spreads over the sys-
tem under unitary time evolution. Specifically, the initial
probability operator (density matrix) is

�ð0Þ ¼ 1

2L
ðI þ ��z

L=2�
z
L=2þ1Þ; (5)

where I is the identity operator and � is a small number.
Note that I commutes with H, so we only need to time
evolve the perturbation. Then, we compute the local energy
hHriðtÞ at each site and bond r at time t. The position index
r is an integer (1 to L) for each site and a half-integer
(3=2 to L� 1=2) for each bond. Explicitly,

Hr ¼

8>><
>>:

g�x
r þ h�z

r sites 2 � r � L� 1

g�x
r þ ðh� JÞ�z

r r ¼ 1 orL

J�z
r�1=2�

z
rþ1=2 bonds 3=2 � r � L� 1=2:

(6)

This is just a decomposition of the Hamiltonian H ¼P
rHr. Trivially, hHri ¼ ��r;ðLþ1Þ=2 at time t ¼ 0. To quan-

tify the energy spreading at time t, we compute an average
‘‘distance’’ RðtÞ that the energy has moved away from the
center bond

RðtÞ ¼ 2

hHi
X
r

��������r� Lþ 1

2

��������hHriðtÞ; (7)

where hHi ¼ � is the conserved total energy. Figure 2(a) is
the plot of RðtÞ for L ¼ 8, 10, 12, 14, and 16. If the extra
energy at long time is distributed equally to all sites
and bonds, Rð1Þ ! ðL=2Þðð2L� 2Þ=ð2L� 1ÞÞ ’ L=2
and thus close to the maximum value of entanglement
spreading [the factor of 2 in Eq. (7) is to make the long-
time value of RðtÞ comparable to that of SðtÞ]. We find that
the saturation value Rð1Þ [24] grows linearly with the
system size but is always slightly smaller than L=2 due
to the final local energy distribution not being homoge-
neous near the ends of the chain.

If this dynamics is diffusive, the energy spread is RðtÞ �
ð4= ffiffiffiffi

�
p Þ ffiffiffiffiffiffi

Dt
p � ffiffi

t
p

(one-dimensional random walk) for
sufficiently large t (t 	 1 in our case) before finite-size
saturation begins. D is the energy diffusivity, which only
depends on the interaction parameters, not the system size.
Figure 2(a) clearly shows that RðtÞ is independent of

FIG. 2 (color online). (a) The average energy spreading RðtÞ
(defined in the main text) vs time. Before saturation, its behavior
does not depend on the system size. As we increase the system
size, diffusive

ffiffi
t

p
behavior becomes more apparent. (b) Direct

comparison of SðtÞ and RðtÞ for L ¼ 16. It is clear that the
entanglement spreads faster than energy diffuses in the scaling
regime before saturation.
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system size at early stages, and it grows as � ffiffi
t

p
before

saturation begins. For L ¼ 8, the frequency scale of the
many-body level spacing is of order 0.1, and thus RðtÞ
begins oscillating around t� 10. Although the system
sizes that we can diagonalize are not large enough to
show a wide range of time scales, they do show that the
speed of entanglement spreading becomes faster than the
rate of diffusive energy spreading by direct comparison of
SðtÞ and RðtÞ. Figure 2(b) is the plot of SðtÞ and RðtÞ for
L ¼ 16. In the very beginning (t � 1), RðtÞ grows faster
than SðtÞ due to microscopic details of the dynamics, but
soon the linearly growing SðtÞ overtakes RðtÞ and
approaches its saturation while RðtÞ is growing only as
� ffiffi

t
p

. Therefore, this is a direct demonstration of the
contrast between ballistic entanglement spreading and dif-
fusive energy transport.

In conclusion, we have demonstrated that quantum
entanglement spreads ballistically in a nonintegrable dif-
fusive system. Since there are no ballistically traveling
quasiparticles, the mechanism of entanglement spreading
is different from what happens in integrable systems,
where these quasiparticles can carry both energy and in-
formation. At high enough temperature, almost all states
are relevant to the dynamics, and the dynamics is con-
strained by only a few conservation laws (in our case, only
the total energy). In this regime, the concept of quasipar-
ticles is not well defined for the system we have studied.
Even so, if we do heuristically describe the dynamics of
our diffusive model in terms of quasiparticles, these qua-
siparticles scatter strongly and frequently and thus have
a short mean free path. This limits the energy transport to
be diffusive. But, apparently, the quantum information
needed to spread entanglement is passed along in each
collision, presumably to all outgoing quasiparticles from
each collision. Thus, this information spreads in a cascade
or shower of collisions and the edges of this shower spread
ballistically.

We conjecture that for highly excited nonintegrable
systems such as those we study here, there are no local
observables whose correlations spread more rapidly than
diffusively, even though the entanglement spreads ballis-
tically. Note that this is a strong conjecture that goes well
beyond what we can test numerically.

We have used the analogy from Ref. [3] between the
spreading of entanglement and the spreading of an epi-
demic. But, it is an unusual sort of nonlocal epidemic,
where the symptoms of the ‘‘disease’’ cannot be detected
by any local observables. In Ref. [25], they make an
analogy instead to a tsunami; again, this appears to be a
very gentle nonlocal tsunami, whose effects can only be
detected by nonlocal observables. An interesting question
that we leave for future work is, what is the simplest and
most local operator that can detect this ballistically spread-
ing entanglement? We detected it using the state of the full
system, but if the entanglement has only traveled a distance

‘ in each direction from the central bond, it should be
detectable by some operators that only involve the spins
within that distance.
We thank Joel Moore and Michael Kolodrubetz for

discussions. We also acknowledge Hanjun Kim, Seok
Hyeong Lee, Taewook Oh, and Jonathan Sievers for fruit-
ful discussions about numerics. The simulations presented
in this work were performed on computational resources
supported by the Princeton Institute for Computational
Science and Engineering (PICSciE) at Princeton
University. This work was supported in part by NSF under
Grant No. DMR-0819860 and by funds from the DARPA
Optical Lattice Emulator Program.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] E. Schrodinger, Proc. Cambridge Philos. Soc. 32, 446
(1936).

[3] R. Omnes, arXiv:1212.0331v1.
[4] E. H. Lieb and D.W. Robinson, Commun. Math. Phys. 28,

251 (1972).
[5] B. Nachtergaele and R. Sims, Contemp. Math. 529, 141

(2010).
[6] M. Kliesh, C. Gogolin, and J. Eisert, arXiv:1306.0716v1.
[7] P. Calabrese and J. Cardy, J. Stat. Mech. 04 (2005)

P04010.
[8] G. De Chiara, S. Montangero, P. Calabrese, and R. Fazio,

J. Stat. Mech. 03 (2006) P03001.
[9] T. Hartman and J. Maldacena, arXiv:1303.1080v2.
[10] C. K. Burrell and T. J. Osborne, Phys. Rev. Lett. 99,

167201 (2007).
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