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We construct a complete set of local integrals of motion that characterize the many-body localized

(MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates

in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We

describe the structure of the eigenstates in the MBL phase and discuss the implications of local

conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization

can be used to protect coherence in the system by suppressing relaxation between eigenstates with

different local integrals of motion.
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Introduction.—Localization of eigenstates of a single
particle in the presence of disorder is among the most
remarkable consequences of quantum mechanics.
Although the single-particle localization and localization-
delocalization transition are well understood [1,2], much
less is known about the nature of the eigenstates in inter-
acting many-body disordered systems. The interest in the
problem of the many-body localization was rekindled
when recent works [3,4] suggested that the localized phase
is stable with respect to weak interactions. This conjecture
was also corroborated by numerical studies [5–16].

In the noninteracting localized phase, dynamics is sim-
ple because any initial wave function can be decomposed
into a superposition of localized single-particle eigen-
states. However, when interactions are introduced, the
dynamics becomes notably richer [7,16–18]. Although
particle transport is still expected to be blocked, the time
evolution of initial product states in the interacting local-
ized phase generates a universal slow growth of entangle-
ment entropy [17]. Saturated entropy was established to
be proportional to system size [7,16–18], and such growth
of the entanglement was argued to reflect ‘‘partial thermal-
ization’’ of the system. However, the type of the ensemble
describing the many-body localized (MBL) phase is
unknown.

On the experimental side, probing the dynamics of
interacting disordered systems has become feasible due
to the advances in the field of ultracold atomic gases
[19,20]. In particular, nearly isolated quantum systems of
cold atoms can now be engineered, prepared in a variety of
initial states (including product states [21]), and studied
during their subsequent time evolution. These opportuni-
ties call for developing a better understanding of the laws
that govern the dynamics in the MBL phase.

Here we consider a many-body system whose eigen-
states at all energies are localized, and show that they

can be characterized by a large number of emergent local
integrals of motion corresponding to multiple local con-
servation laws. These integrals of motion form a complete
set, in the sense that their values completely determine the
eigenstates. Local conservation laws strongly constrain the
quantum dynamics in the MBL phase, preventing a com-
plete thermalization of any given subsystem. Any initial
state can be decomposed in terms of the eigenstates pos-
sessing definite values of the integrals of motion. During
time evolution, the weights of different states cannot
change. However, because of the exponentially weak in-
teraction between distant degrees of freedom, the relative
phases between the states with different values of local
integrals of motion become randomized. Any local observ-
able at long times is therefore determined only by the set of
probabilities of local integrals of motion that affect the
degrees of freedom in the region where the observable is
measured. We refer to this as the local diagonal ensemble.
The dephasing due to the interactions between distant
subsystems is a distinct feature of the MBL phase com-
pared to the noninteracting one, and underlies the slow
growth of entanglement [16,17,22,23].
Integrals of motion.—First, we note that for the non-

interacting case the local integrals of motion are simply

given by Îi ¼ cyi ci, where cyi creates a localized single-
particle state. For fermions, the possible eigenvalues of
this integral of motion are Ii 2 f0; 1g. In a system with K
orbitals, there are 2K eigenstates, which are uniquely
labeled by the eigenvalues of K integrals of motion.
In order to explicitly construct local integrals of motion

for an interacting system, we assume the following prop-
erty of the localized phase: local perturbations lead only to
local modifications of the eigenstates in the MBL phase.
That is, if we act on a MBL eigenstate with a local
perturbation, introduced either adiabatically or instantane-
ously, the degrees of freedom situated at a distance L � �
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(here � is the localization length [24]) away from the
support of the perturbation operator, are generally affected
exponentially weakly. We will support this statement
below by the numerical study of the random-field XXZ
chain, also considered in Refs. [7,10,12,15,16].

Let us consider a MBL system described by a local
Hamiltonian, and let us divide it into subsystems of size
l � �. Without loss of generality, we consider a 1D sys-
tem, although our conclusions apply to localized phases in
any number of spatial dimensions. We number the subsys-
tems by i ¼ 1; . . . ; N from left to right, assuming the
number of degrees of freedom M in each subsystem is
the same (e.g., for K spins, M ¼ 2K). For the fixed sub-
system i, we denote parts of the full system to the left
and to the right of i by Li and Ri, respectively. The
Hamiltonian can be written as

H ¼ HL þHi þHR þHLi þHRi; (1)

where HL, HR, Hi act only on the degrees of freedom in
L, R, i, while HLi, HRi couple L, i and R, i.

If the subsystems L, i, R are disconnected from each
other (i.e., HLi, HRi are set to zero), the eigenstates
are simple products: j���i0 ¼ j�iL � j�ii � j�iR, where
� 2 f1; . . . ;Mi�1g, � ¼ f1; . . . ;Mg, �¼f1;...;MN�ig.
Once the subsystems are connected, the eigenstates of
the full Hamiltonian (1) are obtained from the product
states j���i0 by nearly local rotations. We label the
resulting eigenstates by their ‘‘ancestors,’’ omitting the
‘‘0’’ subscript,

j���i ¼ ÔLiÔRij�iL � �ii � j�iR: (2)

Operator ÔLi is a unitary many-body rotation which
strongly transforms only the degrees of freedom within a
distance �� away from the boundary between L and i

(similarly for ÔRi). The commutator of ÔLi and ÔRi, as
well as the action on the degrees of freedom far away,
decays exponentially. We note that the assignment (2),
which links the eigenstates of the system to the eigenstates
of subsystems, is not unique, and assume that a certain
one-to-one correspondence is chosen.

We now define the integral of motion for subsystem i

Îi ¼
XM
�¼1

�
XMi�1

�¼1

XMN�i

�¼1

j���ih���j: (3)

Being a linear combination of projectors onto the exact

eigenstates, Îi necessarily commutes with the Hamiltonian
and assumes eigenvalues 1; . . . ;M. Intuitively, states with

the same eigenvalue of Îi look nearly identical within the
subsystem i at distances larger than � away from the
boundaries with subsystems L, R.

Sums of projectors onto the eigenstates are integrals of
motion by construction; however, generally such operators
are nonlocal and affect all degrees of freedom of the
system. The operator in Eq. (3) is special in that it is local;

i.e., it weakly affects the degrees of freedom in L or R at
a distance x � � away from the boundaries with the ith

subsystem. The locality of Îi follows directly from the

locality of operators ÔLi, ÔRi, which implies that the
sum of projectors becomes very close to the identity op-
erator far away from the boundaries. Below, we will test
the locality of the operator in Eq. (3) in a specific model.
Having defined the integral of motion for the subsystem

i, we can similarly define N � 1 integrals of motion for the
remaining N � 1 subsystems, such that in total we have N

integrals Îi, i ¼ 1; . . . ; N. Different Îi commute with each

other ½Îi; Îj� ¼ 0 since they are sums of projectors onto the

exact eigenstates of the full system. Each Îi has M pos-
sible eigenvalues; thus, the full description of the system
via integrals of motion requires MN parameters, which
coincides with the dimensionality of the Hilbert space. An

operator Îi can also be viewed as the z component Îi ¼ Ŝiz
of a ‘‘spin’’ S ¼ ðM� 1Þ=2. Raising and lowering opera-
tors can then be used to construct the entire set of eigen-
states, starting from any given eigenstate jI1I2 . . . INi
characterized by the integrals of motion I1; I2; . . . ; IN.
Therefore, specifying the eigenvalues of all integrals of
motion defined above completely determines the eigen-
states of the system.
Hamiltonian and its relation to integrals of motion.—

The Hamiltonian takes an especially simple form when
written in terms of the integrals of motion:

H ¼ XN
i

XM
I1¼1

EIiP̂
i
Ii þ

XN
i�j

XM
Ii;Ij¼1

EIiIjP̂
i
IiP̂

j
Ij

þ XN
i<j<k

XM
Ii;IjIk¼1

EIiIjIkP̂
i
IiP̂

j
Ij
P̂ k

Ik þ � � � ; (4)

where P̂ i
Ii is the projector onto the subspace for which the

eigenvalue of the ith integral of motion is equal to Ii. In the
above equation, EIi can be roughly viewed as the energy of

the ith subsystem for the sector Ii, EIiIj is the interaction

energy between i and j subsystems, etc. There are inter-
actions between any given n subsystems; however, they are
exponentially small. Generally, we expect that energies EIi

are proportional to l, the size of the subsystems. EIiIj are

proportional to � when i ¼ j� 1, and are suppressed as

�e�lðji�jj�1Þ=� otherwise (the interactions between the
neighboring subsystems are limited to the boundary and
are therefore proportional to �). The above representation
of the Hamiltonian gives us a way to describe the dynamics
in the MBL phase for various kinds of initial states
[7,10–12,16,17].
Dynamics.—As a first step, we consider the dynamics of

an eigenstate which is perturbed locally. We assume a

sudden action of the local unitary operator Û on the

eigenstate j�0i ¼ jI1I2 . . . INi. Operator Û acts only on
the degrees of freedom in subsystem 1, and its support is
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situated far from the boundary between subsystems 1
and 2. The initial wave function j�ðt ¼ 0Þi can be decom-
posed in terms of the eigenstates:

j�ðt ¼ 0Þi ¼ Ûj�0i ¼
X
I0
1

UI1I
0
1
jI01I2 . . . INi þ � � � : (5)

This form of the decomposition is dictated by the fact that
the values of the integrals of motion I2; . . . ; IN can be
changed only with an exponentially small probability;
hence, the terms with other values of I2; I3; . . . in Eq. (5)
are represented by ellipses. Neglecting these terms, the
subsequent dynamics becomes trivial:

j�ðtÞi ¼ X
I0
1

UI1I
0
1
e
�iEI0

1
I2...IN

tjI01I2 . . . INi; (6)

where EI01I2...IN is the energy of the state jI01I2 . . . INi.
Generally, we expect a finite number of different I01 which
have significant matrix elementsUI1I

0
1
, typically comparable

to the dimensionality of a subsystem of size��. Therefore,
the time evolution (6) describes coherent oscillations that
involve a finite number of states. Any local observable in
region 1 would therefore oscillate at a number of frequen-
cies, showing revivals but no dephasing. This situation
changes if the state j�0i is not an eigenstate, but a super-
position of several eigenstates which involve different
values of I2; I3; . . . ; Ik. In this case, exponentially slow
dephasing arises, suppressing the revivals and oscillations
of local observables in the long-time limit. The values of
observables at long times are determined by the probabilities
jUI1I

0
1
j2.

Second, we describe the global evolution of states which
differ from the eigenstates everywhere, not just locally. For
definiteness, consider an initial product state of subsystems
1; 2; . . . ; N:

j�i ¼ �N
i¼1

� XM
�i¼1

A�i
j�ii

�
; (7)

where j�ii is an eigenstate of the Hamiltonian Hi. Modern
experimental techniques allow for the preparation and
manipulation of such states in optical lattices [21].

Each component �N
i¼1j�ii of the product state (7) can be

related to the eigenstate of the whole system, jI1I2 . . . INi,
by the set of local rotations acting near the boundaries
between different subsystems. The dynamics correspond-
ing to this effect will be limited to the boundaries between
pairs of subsystems. However, for each wave function,
degrees of freedom at a distance x � � away from the
boundary will remain undisturbed. Such dynamics there-
fore does not generate long-range entanglement.

More importantly, since we are dealing with a superpo-
sition of different product states �N

i¼1j�ii, the degrees of

freedom in the subsystem i will be in a superposition of
states with different values of the integral of motion Ii.
Different states entering this superposition are eigenstates;

therefore, their relative weights cannot change under time
evolution. However, their phases will become random due
to the interactions with distant subsystems, as is evident
from the Hamiltonian (4). Such dephasing, though expo-
nentially slow, will produce long-range entanglement, and
thus give rise to the entanglement entropy that is extensive
in the system size and determined by the participation
ratios of different eigenstates [25], as discussed in detail
in Ref. [16].
Numerical simulations.—Although our construction is

general, we now test the validity of our basic assumption
using exact diagonalization of a particular model—the
random-field XXZ spin chain. We consider a chain of L
spins with open boundary conditions, exchange J? ¼ 1,
and interaction strength Jz ¼ V, while the random onsite
magnetic field is uniformly distributed in the interval�W.
The total z component of the spin is conserved, and calcu-
lations are restricted to the Sz ¼ 0 sector. For V ¼ 0 the
model is equivalent to free fermions with disorder, and all
states are localized. Because of the limits on the accessible
system sizes in exact diagonalization, we restrict ourselves
to the case of the symmetric bipartite division of the full
system LR into the left (L) and right (R) half.
First, we study the averaged entanglement entropy Sent

of theL subsystem in the eigenstates ofLR, illustrated in
Fig. 1(a). For strong disorder, Sent saturates to a value of the
order 1 with increasing system size, indicating short-range
entanglement in the MBL eigenstates, which is consistent
with our basic assumption.
Next, we use the inverse participation ratio (IPR) as an

intuitive, albeit somewhat indirect, test of the locality of

operators ÔLi from Eq. (2), which, when acting on prod-
ucts of eigenstates of systems L, R, give eigenstates of
LR. The IPR for some state j�i over a complete basis j�ii
is defined as IPRðj�iÞ ¼ ðP p2

i Þ�1, where pi ¼ jh�j�iij2
represents the probability of finding a state j�ii. Defined in
such a way, the IPR takes values between 1 and the Hilbert
space dimension, and effectively tells us how many

FIG. 1 (color online). (a) Averaged entanglement entropy is of
the order 1 and varies weakly with L for strong disorder, indicat-
ing that eigenstates are short-range entangled. Interaction strength
is V ¼ 1. (b) Inverse participation ratios for the product of two
eigenstates of the L and R subsystems are close to 1 and do not
depend on L for strong disorder.
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components have nonzero weight in the decomposition of
the given state over the chosen complete basis. Figure 1(b)
shows the average IPR for the product j�i � j�i of two
random eigenstates of the L and R subsystems over the
eigenstates j�i of LR. The value of the IPR at strong
disorder is very close to 1, indicating that the product of
eigenstates of L and R is ‘‘close’’ to the eigenstate of the
full system LR. Furthermore, the IPR does not grow with
L for strong disorder, suggesting that the product of eigen-
states of L and R differs from the eigenstate of the full
system only near the boundary.

To provide further support for our construction of the
integrals of motion, we numerically implemented the pro-
jector operator similar to the one defined in Eq. (3). Every
eigenstate j�i of LR is labeled by its ‘‘ancestor’’ in L as
in Eq. (2). To find the ancestor, we calculate the density
matrix �̂� for the L subsystem from j�i. Using �̂�,
we extract the probabilities of all eigenstates of L as
p� ¼ jh�j�̂�j�ij2. In the limit of very strong disorder the
typical value of the largest p� is close to 1 [26]. Thus, the
‘‘ancestor’’ for j�i is defined to be an eigenstate of L
with the largest probability p�.

Although we do not assign labels for the right subsys-
tem, such labeling is sufficient to implement the operator

P̂� ¼ P
�P̂�� as a projector onto the subspace of all

eigenstates with the same label � for the L. As a simple

test, we study the locality of the projector P̂�: by construc-
tion it must have trivial action in the right subsystem.
To test this property, we perturb some eigenstate with label
�, j��i, at the right boundary jc �i ¼ ð1=2þ 2SL �
SL�1Þj��i. Because we are interested in the weight of
jc �i in the subspace with the same label �, we plot the

averaged hc �jP̂�jc �i as a function of disorder in Fig. 2.
For strong disorder, even when the interaction strength is
V ¼ 1, the perturbed state jc �i has almost all of its weight
in the subspace with index �, indicating that the degrees of

freedom in the subsystem L are not affected by the per-
turbation acting on the subsystem R. It is evident from
Fig. 2(b) that the weight within the subspace � grows as
a function of system size at W >W�, and decreases at
W <W�, where W� 	 3. Thus, W� gives an estimate of
the MBL transition location in agreement with Ref. [10].
We note that the construction described above allows for
more explicit tests to be done, which will be presented in
future work [27]. Additional numerical verifications of our
central assumption can be found in Ref. [26].
Discussion.—We established that the MBL phase is

characterized by a number of local integrals of motion,
supporting the hypothesis put forward in Ref. [18]. This
implies that the MBL phase does not thermalize, and only
partial thermalization of initial product states, constrained
by the local conservation laws, is possible.
It should be noted that there are many ways to define

local integrals of motion. For example, in certain problems
[28] it might be helpful to label the integrals of motion by a
set of 1=2 pseudospins. Then, M ¼ 2K possible values of

a given integral of motion Îi can be viewed as states of K
pseudospins �

�
i , � ¼ 1; . . . ; K. The z projections of these

pseudospins form a complete set of integrals of motion,
and the Hamiltonian only involves �

�
iz operators and their

products. Operators ��
i can be viewed as effective degrees

of freedom, in terms of which the dynamics becomes
trivial: up-down states of spins are eigenstates, so time
evolution can only lead to the dephasing between them.
Another implication of our work concerns the structure

of the MBL eigenstates: they are short-range entangled,
obey the area law, and can be generally represented as a
product of eigenstates of the subsystems of size� �which
have been locally ‘‘corrected’’ near the boundaries with
neighboring subsystems. This suggests an efficient numeri-
cal procedure for describing the MBL eigenstates in terms
of matrix-product states. Starting from the product of
eigenstates of decoupled blocks of size� �, entanglement
between the blocks is introduced by the repeated action of
the boundary terms in the Hamiltonian. The boundary
terms generate only a finite-dimensional space; thus, di-
agonalizing the boundary Hamiltonian for each finite-
dimensional subspace, it should be possible to find the
eigenstates of two coupled blocks, etc.
Finally, our picture suggests a realistic route to extend-

ing coherence times in nearly isolated quantum systems,
where decoherence is induced by interactions. Examples of
such systems, in addition to systems of ultracold atoms,
include nuclear spins and NV centers in diamond [29].
Assuming that one could induce strong static disorder
leading to the many-body localization, the coherence
time of a subsystem can be made very long. To achieve
this, one needs to prepare a subsystem of size � � (e.g.,
subsystem 1 in the above example), as well as its immedi-
ate neighborhood (e.g., subsystem 2) in some eigenstate.
Then, local operations on the subsystem’s degrees of

FIG. 2 (color online). The weight of the perturbed eigenstate
j��i in the subspace with index �. For strong disorder, the action
of the projector is contained within the subspace �, irrespective
of the interaction: the case of no interaction V ¼ 0 is shown in
(a), and V ¼ 1 in (b). The weight increases with system size. For
weak disorder (W < 3), the presence of interactions causes the
weight to decrease with the system size, suggesting the onset of
the delocalized phase.
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freedom would couple states with different integrals of
motion I1, but with fixed values of I2. Therefore, even
though the rest of the system is in some complicated
superposition state, it will only give rise to an exponen-
tially weak dephasing, with the rate proportional to
expð�l=�Þ.
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Note added.—During the completion of this manuscript,
we became aware of a related work [28] discussing the
existence of local integrals of motion in the MBL phase.
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