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Massless Dirac fermions in graphene at charge neutrality form a strongly interacting system in which

both charged and neutral (energy) modes play an important role. These modes are essentially decoupled in

the absence of a magnetic field, but become strongly coupled when the field is applied. We show that this

regime is characterized by strong magnetodrag and Hall drag, originating from long-range energy currents

and spatial temperature gradients. The energy-driven effects arise in a wide temperature range, and feature

an unusually strong dependence on field and carrier density. We argue that this mechanism accounts for

the recently observed giant magnetodrag and Hall drag occurring at classically weak fields.

DOI: 10.1103/PhysRevLett.111.126601 PACS numbers: 72.80.Vp, 73.23.�b, 73.63.�b

Graphene near charge neutrality (CN) hosts an intrigu-
ing electron-hole system with unique properties [1–10].
However, the lack of coupling of the neutral modes which
dominate CN physics to charge modes which are easily
probed in transport measurements stymies experimental
progress; introducing coupling between these modes will
help to advance our understanding of CN. There is a long
history of employing magnetic field for such a purpose,
since transport in charge-neutral plasmas is ultrasensitive
to the presence of external magnetic fields [11].

A new and interesting system in which magnetotransport
at CN can be probed are atomically thin graphene double
layer G/hBN/G structures [12,13]. Strong Coulomb cou-
pling between adjacent layers in these systems results in
strong Coulomb drag, arising when current applied in one
(active) layer induces a voltage in the adjacent (passive)
layer [13–22]. Recent measurements [13] revealed drag
resistance that peaks near CN and strongly depends on
magnetic field, with the peak value increasing by more
than an order of magnitude (and changing sign) upon
application of a relatively weak B field. Strong magnetic
field dependence of drag has been observed previously in
semiconductor-based systems in the quantum Hall effect
regime [23–25]. In contrast, the anomalous magnetodrag
found in Ref. [13] occurs at classically weak fields
B & 1T.

Here we explain this puzzling behavior in terms of an
energy-driven drag mechanism which involves coupled
energy and charge transport [20,22] (see Fig. 1). Energy
transport plays a key role because of fast vertical energy
transfer due to interlayer Coulomb coupling in G/hBN/G
systems [20] and relatively slow electron-lattice cooling
[26,27]. As a result, current applied in one layer can create
a spatial temperature gradient for electrons in both layers,
giving rise to a thermoelectric drag voltage. The effect
peaks at CN, since the thermoelectric response is large
close to CN [8–10] and diminishes as 1=EF upon doping
away from CN [28,29]. Drag arising from this mechanism

is dominated by the thermoelectric response, which makes
it largely insensitive to the electron-electron interaction
strength.
Another interesting effect that can be probed in these

systems is that of Hall drag. It has long been argued that, at
weak coupling, no Hall voltage can arise in the passive
layer in the presence of current in the active layer [30,31].
This is so because, at leading order in interaction, trans-
ferred momentum is parallel to velocity, allowing only a
longitudinal ‘‘back current’’ to develop in the passive layer.
As we shall see, a very different behavior arises at strong
coupling, owing to the long-range energy currents that lead
to electron-lattice temperature imbalance. Close to CN,
the magnitude of the cross couplings between charge
and energy currents becomes large, producing a finite

Hall drag, VH ¼ Rdrag
H Ik.

Aswewill see, energy currents result inHall andmagneto-

drag resistances, Rdrag
H and Rdrag

k , that are large and peak near

CN; see Figs. 1 and 2. These large values arise even for
classically weak fields B� 0:1 T, exceeding by 2 orders of
magnitude the values found in other systems [23–25] at
similar fields. The mechanism based on coupled energy
and charge transport predicts large and negative drag at CN
that matches recent experiments [see Figs. 1(c) and 1(d)].
This mechanism also naturally leads to Hall drag because
vertical energy transfer between layers does not discriminate
between longitudinal and transverse heat currents since the
temperature profile is a scalar field. This stands in contrast to
conventional momentum driven drag, see above.
Heat current and an electric field, induced by charge

current and temperature gradients, are coupled via the
thermoelectric effect altered by a B field,

j q ¼ Qj; E ¼ Q
rT
T

: (1)

Here Q is a 2� 2 matrix, describing the thermoelectric

effect (diagonal components) and the Nernst-Ettingshausen
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effect (off-diagonal components). Onsager reciprocity
requires that Q in both expressions in Eq. (1) are the same

[see analysis following Eq. (9)].
We illustrate the energy-induced drag mechanism in a

Hall bar geometry (Fig. 1). When a longitudinal charge
current is applied in the active layer (for B � 0) a trans-
verse (Ettingshausen) heat current develops in both layers
through efficient vertical energy transfer. Nernst voltage in
the passive layer results in a longitudinal magnetodrag of a
negative sign.

To obtain the electric field in layer 2 induced by current
applied in layer 1, we first need to understand the coupling
of temperature profiles T1;2ðrÞ in the two layers. Energy

transport in the system can be described by

�r�1r�T1 þ að�T1 � �T2Þ þ ��T1 ¼ �r � ðQð1ÞjÞ;
�r�2r�T2 þ að�T2 � �T1Þ þ ��T2 ¼ 0; (2)

with a the energy transfer rate between the two layers [20],
� the electron-lattice cooling rate, and �Ti ¼ Ti � T0.
(Here T0 is the lattice temperature, equal for both layers;
the values � and a will be discussed below.)

Assuming a long Hall bar, L � W, we treat the electric
and heat currents as independent of the x coordinate along

the bar (Fig. 1). In layer 1, current is injected at x ¼ �L=2
and drained at x ¼ L=2. In layer 2, the Hall drag voltage
arising across the device, VH, and the longitudinal drag
voltage, Vk, are evaluated as

VH ¼
Z W=2

�W=2
Eð2Þ
y dy; Vk ¼ L

W

Z W=2

�W=2
Eð2Þ
x dy: (3)

The electric and thermal variables may depend on the
transverse coordinate y, see below.
Boundary conditions for a Hall bar require electric

current to be tangential to the side boundaries, y ¼
�W=2, and zero temperature imbalance at the ends,
x ¼ �L=2, reflecting that the current and voltage contacts
act as ideal heat sinks. The electric current parallel to the
boundaries y ¼ �W=2 gives rise to the Ettingshausen heat
current that may have a component transverse to the Hall
bar. The divergence of this heat current, appearing on the
right-hand side of Eq. (2), acts as an effective boundary
delta function source in the heat transport equations.
Boundary conditions can profoundly influence the symme-
try of the resultant drag resistivity, see below.
We consider the case of a spatially uniform Q in both

layers. The ideal heat sinks at x ¼ �L=2 mean that no
temperature imbalance develops in the x direction (except
for some ‘‘fringing’’ heat currents near the contacts which
give a contribution small in W=L � 1, which we will
ignore in the following discussion). Since no temperature
gradients are sustained in the x direction far from the ends,
we can reduce our problem Eq. (2) to a quasi-1D problem
with temperature profiles that only depend on the y

FIG. 1 (color online). Energy-driven magnetodrag in a double
layer graphene heterostructure close to CN. (a) Schematic of
charge current, temperature gradients, and electric field in the

two layers that give rise to a negative �
drag
k . (b,c) Magnetodrag

resistivity, �
drag
k , obtained from Eqs. (11) and (13). Parameter

values: B ¼ 0:6 T, n0 ¼ 1011 cm�2, T ¼ 150 K, and �0 ¼
ðh=3e2Þ. The B ¼ 0 dependence taken from the model of drag
at zeroB field [20,21]. (d) Experimentally measuredmagnetodrag
resistivity in G/hBN/G heterostructures, reproduced from
Ref. [13] for the same B values as in (c). Application of magnetic
field leads to a giant negative drag at CN.Note the similarity of the
drag density dependence, B dependence, and sign in (c) and (d).

FIG. 2 (color online). (a) Schematic of charge current, tem-
perature gradients, and electric field in the two layers of a Hall
bar that produces Hall drag. (b,c) Density dependence of Hall
drag resistance, predicted from Eqs. (11) and (13) for the same
parameter values as in Fig. 1. (d) Density dependence of Qxx,
Qxy, see text.
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coordinate. As a result, the only heat source arises from the

Ettingshausen effect Qð1Þj ¼ ðQð1Þ
yx jÞŷ.

To describe transport in the presence of such a source,
we will expand temperature variables in both layers in a
suitable orthonormal set of functions. Here it will be
convenient to use eigenstates of the operator @2y with zero

Neumann boundary conditions at y ¼ �W=2, given by

unðyÞ ¼ A cos

�
2�n

W
y

�
; vnðyÞ ¼ A sin

�
2�ðnþ 1

2Þ
W

y

�
;

A ¼ ð2=WÞ1=2, n ¼ 0; 1; 2; . . . From the symmetry of the
source in Eq. (2) we expect �T1;2ðyÞ to be odd in y. Thus,
only the functions vnðyÞ are relevant, giving

�T1;2ðyÞ ¼
X
qn

� ~T1;2ðqnÞA sinqny; qn ¼
2�ðnþ 1

2Þ
W

:

For each n we obtain a pair of algebraic equations

q2n�1� ~T1 þ að� ~T1 � � ~T2Þ þ �� ~T1 ¼ Fn;

q2n�2� ~T2 þ að� ~T2 � � ~T1Þ þ �� ~T2 ¼ 0;
(4)

where �1;2 ¼ �ð1;2Þ
xx and Fn ¼ 2Að�1ÞnQð1Þ

yx j. Solving

Eq. (4), we find the temperature profile in layer 2:

�T2ðyÞ ¼
X
n�0

aFn

L1ðqnÞL2ðqnÞ � a2
vnðyÞ; (5)

where LiðqnÞ ¼ �iq
2
n þ aþ � (i ¼ 1, 2). Since electron-

lattice cooling is slow at not too high temperatures [26,27],
with the corresponding cooling length values in excess of a
few microns, we will suppress � in what follows. Because
the boundaries in the transverse (y direction) are free, a
finite temperature imbalance between the edges can arise,
given by �T ¼ �T2ðy ¼ W=2Þ � �T2ðy ¼ �W=2Þ. We
find

�T ¼ 4A2
X
n�0

aQð1Þ
yx j

L1L2 � a2
¼ 8

W ~�

X
n�0

Qð1Þ
yx j

q2nð1þ �2q2nÞ
; (6)

where we defined ~� ¼ �1 þ �2 and a length scale

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2=a~�

p
. We evaluate the sum using the identity

X
m

1

m4 þ c2m2
¼ �2

2c2

�
1� tanh�c

�c

�

(m ¼ 1=2; 3=2; 5=2 . . . ). We obtain

�T ¼ WQð1Þ
yx j

~�
Gð�Þ; Gð�Þ ¼ 1� 2�

W
tanh

�
W

2�

�
: (7)

Connecting �T with the drag voltage, and in particular
determining its sign, requires taking full account of
Onsager reciprocity. This analysis is presented below.

In the same way that the applied charge current, j, in
layer 1 causes a heat current (Peltier or Ettingshausen), a
temperature imbalance in layer 2, �T, can sustain voltage

drops across the sample (thermopower or Nernst). These
two effects are related by Onsager reciprocity constraints.
The cross couplings in the coupled energy and charge
transport equations [32] arise from

�j

jq

0
B@

1
CA ¼

eL11=T eL12

L21=T L22

0
B@

1
CA

r�

r 1
T

0
B@

1
CA; (8)

where L’s are 2� 2 block matrices and e is the carrier
charge. In this notation, the electrical conductivity equals
� ¼ e2L11=T, and thermal conductivity is � ¼ L22=T

2.
Comparing to the heat current due to an applied charge
current, Eq. (1), we identify L21 ¼ �eQL11. We will use

numerical subscripts to indicate the position of the block
matrices L as in Eq. (8), and alphabetical superscripts to
refer to the components in each block.
Onsager reciprocity demands that the cross couplings

obey L12ðBÞ ¼ LT
21ð�BÞ, where B is the applied magnetic

field (note the transposed matrix). In an isotropic system

the off-diagonal components of L obey LðxyÞðBÞ ¼
LðyxÞð�BÞ. As a result, Onsager reciprocity reduces to

L 12ðBÞ ¼ L21ðBÞ (9)

in an isotropic system. Applying Eq. (9) to Eq. (8) in an
open circuit, we find E ¼ �e�1r� ¼ T�1L�1

11 QL11rT.
For an isotropic systemQ ¼ Qxx1þ iQxy�2,L ¼ Lxx1þ
iLxy�2, so that ½Q;L	 ¼ 0, which gives Eq. (1).

Several different regimes arise depending on the relation
between the interlayer cooling length � and the bar width
W. Using Eqs. (3) and (1) we obtain

Vk
VH

� �
¼ Rdrag

k �Rdrag
H

R
drag
H R

drag
k

0
@

1
A Ik

0

� �
; (10)

giving the magnetodrag and Hall drag resistance values

R
drag
H ¼ �Gð�Þ

T~�
Qð1Þ

xy Q
ð2Þ
xx ; R

drag
k ¼ �LGð�Þ

WT~�
Qð1Þ

xy Q
ð2Þ
xy ;

(11)

where we used Qxx ¼ Qyy and Qxy ¼ �Qyx for an iso-

tropic system. For slow interlayer cooling, � � W, we

have G ! 0, giving vanishingly small R
drag
H;k . For fast inter-

layer cooling, � � W, we have G ! 1. In this case R
drag
H;k

saturates to a universal value independent of the interlayer
cooling rate. For typical device parameters, we estimate
� 
 40 nm at T ¼ 300 K [20]. Since L, W are a few
microns for typical graphene devices, we expect them to
be firmly in the G ¼ 1 regime, with the Hall drag and
magnetodrag attaining universal values independent of the
electron-electron interaction strength.
To describe the density and B-field dependence, we use

a simple model for Q. Measurements indicate [8,9] that
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thermopower and the Nernst effect in graphene are well
described by the Mott formula [33], giving

Q ¼ �2

3e
k2BT

2�
@½��1	
@�

; � ¼ �k �H

��H �k

� �
; (12)

with � the resistivity, e < 0 the electron charge, and � the
chemical potential. We use a simple phenomenological
model [34] relevant for classically weak B fields

�k ¼ �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2=n20

q ; �H ¼ �Bn

eðn2 þ n20Þ
; (13)

where �0 is the resistivity peak value at the Dirac point, n is
the carrier density, and parameter n0 accounts for broad-
ening of the Dirac point due to disorder. We account
for disorder broadening of the density of states,

dn=d� ¼ ðn2 þ n20Þ1=4½2=ð�@2v2
FÞ	1=2.

From Eqs. (11)–(13) and the Wiedemann-Franz relation

for �, we obtain �
drag
k ¼ ðW=LÞRdrag

k and R
drag
H . The

modeling results are shown in Figs. 1(b), 1(c), 2(b), and 2
(c), where we used the parameter values n0 ¼ 1011 cm�2,
�0 ¼ ðh=3e2Þ, and a representative temperature, T ¼
150 K. These values match device characteristics (disorder
broadening, n0, and peak resistivity, �0) described in
Ref. [13]. As a sanity check, we plot the components of
Q [in Fig. 2(d)] which show the behavior near CN match-

ing thermopower and Nernst effects measured in graphene
[8,9].

Analyzing magnetodrag, we find that �
drag
k peaks at dual

CN, n1 ¼ n2 ¼ 0, taking on large and negative values
[Figs. 1(b) and 1(c)]. The magnetodrag peak exhibits a steep

B dependence, �drag
k;peak / �B2, bearing a striking resem-

blance to measurements reproduced in Fig. 1(d). In particu-
lar, our model explains the negative sign of the measured
magnetodrag.

Hall drag is large and sign changing [see Figs. 2(b)
and 2(c)], taking on values consistent with measurements
[35]. Interestingly, the map in Fig. 2(b) indicates that the

sign of R
drag
H is controlled solely by carrier density in layer

2, breaking the n1 $ n2 symmetry between layers. This
behavior does not contradict Onsager reciprocity. It arises
as a consequence of the asymmetric boundary conditions
for the Hall bar: free boundary at y ¼ �W=2 and ideal heat
sinks at the ends, �Tðx ¼ �L=2Þ ¼ 0. This allows for
finite temperature gradients to be sustained across the bar
but not along the bar; see Fig. 2(a).

For other geometries, the temperature gradient can be
obtained by balancing the heat flux due to thermal
conductivity against the net heat flux in the two layers,

ð�1 þ �2Þr�T ¼ DQð1Þj1 [see Eq. (24) of Ref. [22]]. The
quantity D can in principle be obtained by solving heat
transport equations. Adopting the same approach as above,
we find a magneto and Hall-drag resistivity

� drag ¼ 1

T~�
Qð2ÞDQð1Þ; E2 ¼ �dragj1: (14)

For isotropic heat flow, D ¼ 1. In this case, since Qð1Þ

and Qð2Þ commute, the resulting drag is layer symmetric,

n1 $ n2 [22]. In particular, Hall drag for D ¼ 1 vanishes
on the diagonal n1 ¼ �n2. In contrast, for anisotropic heat
flow, such as that discussed above, we expect a generic
tensor D � 1 and thus no layer symmetry.
We wish to clarify, in connection to recent measure-

ments, [35] that layer symmetry n1 $ n2 implies a swap
of current and voltage contacts. Layer symmetry, corre-
sponding to D ¼ 1 in Eq. (14), will therefore only hold for
Hall bars equipped with wide voltage contacts, for which
the contact and the bar widths are comparable. This is
indeed the case for the cross-shaped devices used in
Ref. [13]. However, it is not the case for a Hall bar with
noninvasive voltage probes which are much narrower
than the bar width, as assumed in our analysis above.
Noninvasive probes, which have little effect on tempera-
ture distribution in the electron system, translate into
D � 1 and no layer symmetry.
In summary, magnetic field has a dramatic effect on drag

at CN because it induces strong coupling between neutral
and charge modes, which are completely decoupled in the
absence of a magnetic field for a uniform system. Field-
induced mode coupling leads to a giant drag that dwarfs the
conventional momentum drag contribution as well as a
remnant drag due to spatial inhomogeneity [20]. Our esti-
mates indicate that these two contributions are orders of
magnitude smaller than the predicted magnetodrag, which
also has an opposite sign. The giant magnetodrag and Hall
drag values attained at classically weak magnetic fields,
along with the unique density dependence and sign, make
these effects easy to identify in experiment. The predicted
magnetodrag is in good agreement with findings in
Ref. [13]. Magnetic field, coupled with drag measurements
at CN, provides a unique tool for probing the neutral modes
in graphene.
We acknowledge useful discussions with A.K. Geim,
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