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We introduce a construction to ‘‘periodize’’ a quasiperiodic lattice of obstacles, i.e., embed it into a unit

cell in a higher-dimensional space, reversing the projection method used to form quasilattices. This gives

an algorithm for simulating dynamics, as well as a natural notion of uniform distribution, in quasiperiodic

structures. It also shows the generic existence of channels, where particles travel without colliding, up to a

critical obstacle radius, which we calculate for a Penrose tiling. As an application, we find superdiffusion

in the presence of channels, and a subdiffusive regime when obstacles overlap.
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Quasicrystals are produced by cooling from a melt at a
rate intermediate between that of periodic crystals (slow)
and glasses (fast), and have a degree of order which is
intermediate between the two, being neither periodic nor
random [1–4]. Such structures have been found and applied
in many different contexts, including liquid crystals [5],
bilayer water [6], asteroids [7,8], magnetic systems [9], and
photonics [10].

Transport properties of quasicrystalline materials are of
particular interest for their production and for technologi-
cal applications [11]. Diffusion has been extensively
studied experimentally [12–14]; it is related to other trans-
port properties, such as heat conductivity and electronic
transport [12]. The measured thermopower in quasicrystals
is due to electron diffusion [15], and diffusion plays a role
in the formation of the equilibrium phase during high-
temperature annealing [16].

Since quasicrystals are often perfect quasilattices [17], it
is useful to study simple models in order to understand the
effect of geometry on transport properties. A widely used
billiard model for transport properties is the Lorentz gas
(LG) [18], consisting of an array of fixed obstacles in Rn,
with freely moving particles undergoing elastic collisions
with the obstacles.

The geometry in which the obstacles are arranged in a
LG strongly influences its dynamical properties. LGs with
a periodic geometry usually exhibit normal diffusion, i.e.,
asymptotic behavior h�xðtÞ2i � t as t ! 1 for the mean-
squared displacement [19–23]; here, �xðtÞ :¼ xðtÞ � xð0Þ
is the displacement of a particle at time t, and h�i denotes an
average over uniform initial conditions. However, a key
role is played by the presence of channels, i.e., empty
regions through which particles may travel infinitely far
without colliding: channels of the highest dimension,
n� 1, give rise to weak superdiffusion of the form
h�xðtÞ2i � t lnt, with a logarithmic correction [23–27].

If the obstacles are placed randomly, but without over-
lap, normal diffusion is found [28]. When overlaps are
allowed, there is a crossover from a subdiffusive regime,

h�xðtÞ2i � t� with �< 1, to normal diffusion at long
times; the slowdown of diffusion is due to the presence
of large traps near the percolation threshold [29–33].
It is then natural to investigate dynamics, and in particu-

lar diffusive transport, for the intermediate case, a quasi-
periodic LG, as suggested in Ref. [34] for a Penrose tiling.
A random walk on this structure exhibits normal diffusion
[35], suggesting that the same should occur in the billiard
model [34]. We are not aware of previous numerical results
in this direction, except in a nonphysical one-dimensional
(1D) system [36], mainly due to the challenge of simulat-
ing quasiperiodic systems in the absence of periodic
boundary conditions. Recently, the distribution of free
paths in quasicrystals has been established in the so-called
Boltzmann-Grad limit [37].
In this Letter, we introduce a construction to embed

quasiperiodic structures into a periodic system of higher
dimension, by reversing the projection method used to
produce quasiperiodic lattices [38–40]. Our construction
solves the principal difficulty with quasiperiodic systems,
by reducing the system to a single periodic unit cell, and
hence to a finite (compact) set, now in the higher-
dimensional system; see also Ref. [37].
This has several implications. First, it provides a direct

method for understanding and numerically simulating dy-
namics in quasiperiodic structures. Second, it gives a natu-
ral notion of uniform distribution (measure), and hence of
averages, in quasiperiodic systems.
Motivated by the results cited above on periodic Lorentz

gases, as well as by Ref. [34], where it was suggested
that the absence of periodicity may prevent the occurrence
of channels, and by Refs. [41,42], where it was shown
experimentally and analytically that interplane and
interline distances in certain perfect quasilattices are finite,
we may ask when a quasiperiodic LG may contain
channels. A third consequence of our construction is that
in fact this occurs generically: when the obstacles of a
quasiperiodic LG are sufficiently small, it does contain
channels.
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As an example, we apply our method to study diffusive
properties of a particular 2D quasiperiodic LG, finding
three regimes, including superdiffusion in the presence of
channels, a subdiffusive regime when the obstacles over-
lap, and normal diffusion for intermediate geometries. We
also find explicitly the critical obstacle radius at which
channels are blocked in the quasiperiodic Penrose tiling.

Projection method.—The projection method [38,39,43]
constructs a quasiperiodic lattice in a subspace E (includ-
ing the origin) of a Euclidean space Rn by projecting
vertices of a hypercubic lattice L, consisting of points
with integer coordinates in Rn, onto E [38–40]. We denote
by m the dimension of E, with m< n, and by E? the
orthogonal complement of E, of dimension n�m, such
that E � E? ¼ Rn. In the following, we refer to orthogonal
projections as ‘‘projections.’’

One version of the projection method [39] considers the
Voronoi region of a lattice point p of L, i.e., a cube
centered at p, projecting onto E exactly those p whose
Voronoi regions intersect E; see Fig. 1(a). This gives a set
Lk of points in E, which is a quasiperiodic lattice if E is

totally irrational [39].
The Voronoi projection method produces the same qua-

silattice as the following canonical projection method [39]:
consider a cube whose side length is the lattice spacing,
centred at the origin, and project it onto the orthogonal
subspace E?, giving a setW. The lattice points in L which
lie inside W � E are projected onto E; see Fig. 1(b).

Construction of embedding.—The quasiperiodic LG
consists of balls of dimension m in E centred at each point
of Lk. We ‘‘reverse’’ the projection method to construct a

billiard obstacle K inside a unit cube C of Rn with periodic
boundary conditions, designed such that trajectories of the
billiard dynamics in C with velocities parallel to E give
trajectories of the quasiperiodic LG when the dynamics is
‘‘unfolded’’ to Rn, by using periodic boundary conditions
in one cell, but keeping track of which cell has been
reached [44].

Consider free motion of a particle inside C whose
velocity is constrained to move parallel to E. When the
particle reaches a face of C, it jumps to the opposite face,
due to the periodic boundary conditions, but maintains the
same velocity. It then moves on a different ‘‘slice’’,
Ev :¼ Eþ v, parallel to E but translated by a vector
v 2 E?; see Fig. 2(a). In this way, the whole of the plane
E is ‘‘wrapped’’ into one single unit cell C.
Since E is totally irrational, a trajectory emanating

from a generic initial condition inside the cube C will fill
C densely [45]; similarly, the collection of parallel slices
Ev which are visited by a given trajectory also fill C
densely [45].
C can now be thought of as representing each Voronoi

cell in Rn which intersects E. The projection method then
requires to project the origin onto each slice Ev intersecting
C. We denote by W the set of such points; it is exactly the
projected set used in the canonical projection method.W is
a subset of full dimension inside E?, which can be con-
structed by projecting the vertices of C onto E? and taking
the convex hull.
We now project onto E? not just a single point at the

origin, but the whole billiard obstacle B in E, an
m-dimensional ball of radius r centered at the origin. The
result is a new set P :¼ W � B of full dimension n.
However, some parts of P fall outside C, as shown in
Fig. 2(a). We must thus periodize P via the periodic
boundary conditions, giving a set K, which is the final
result of the construction, a billiard obstacle inside C.
To simulate the quasiperiodic billiard in the

m-dimensional space E, we run billiard dynamics inside
the n-dimensional cube C, imposing elastic collisions with
the billiard obstacle K. The particles have initial velocities
parallel to E; since the boundary of K is cylindrical, with
axis perpendicular to E, collisions of the particles with K
do not (in principle) affect this property, so that they
remain parallel to E during the dynamics. (In practice, in
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FIG. 1 (color online). Two versions of the projection method:
(a) Voronoi regions, shown as shaded (green) boxes; arrows
show lattice points in L that are projected onto the line E.
(b) Canonical version, projecting lattice points inside a strip.
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FIG. 2 (color online). Embedding a 1D quasiperiodic lattice
into a 2D periodic billiard. (a) Construction of the set P by
projection and ‘‘thickening.’’ Parallel diagonal lines (red online)
show ‘‘slices’’ Ev. (b) The billiard obstacle K, after periodizing
P, made of three oblique (red) bars. Short and long paths for the
billiard dynamics are shown.
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a numerical simulation, it is desirable to project the veloc-
ities onto E at intervals.) When the resulting billiard tra-
jectory is unfolded to Rn, it gives exactly a billiard
trajectory in the quasiperiodic LG.

Uniform distribution.—Our construction provides a
natural way to define a uniform distribution (measure) on
the phase space of a quasiperiodic system: particle posi-
tions are uniform in the cube C outside the billiard obstacle
K, and velocities have unit speed and uniform directions
parallel to E. Averages are then taken with respect to this
uniform distribution. We conjecture that the dynamics in a
quasiperiodic LG is ergodic; i.e., from almost any (acces-
sible) starting point, the trajectory fills uniformly the ac-
cessible phase space.

The simplest example is a 1D quasiperiodic billiard with
n ¼ 2 and m ¼ 1, so that C is a square, E is a straight line
with irrational slope �, and B is a line segment of length r.
The set K then consists of three thickened line segments
with slope�1=�; see Fig. 2(b). Since K divides the square
completely into two parts, there is, as expected, no diffu-
sion in this case: any given trajectory remains confined,
bouncing between two neighboring obstacles. However,
our construction easily allows us to calculate, for example,
the probabilities of long and short paths from uniform
initial conditions, in terms of the sizes of the respective
areas [see Fig. 2(b)].

2D quasiperiodic Lorentz gas.—A nontrivial example in
which the construction may be visualized is a 2D quasi-
periodic LG formed by projecting a 3D simple cubic
lattice, with cubic unit cell C, onto a totally irrational 2D
plane E, with B being a disc of radius r and W a 1D line
perpendicular to E; the resulting 3D periodic billiard is
shown in Fig. 3. The obstacle K consists of three segments

of a cylinder, and the two parts of the cylinder which arise
by periodizing P are capped by planes Ev passing through
vertices of C.
Channels.—This 2D LG (Fig. 3) provides an example in

which the occurrence of channels in quasiperiodic LGs
may be visualised, thus providing intuition for the general
case, as follows.
The axisW of the cylinderK intersects two of the cube’s

faces. Suppose that the radius r of the obstacle B, and
hence of the cylinder K, is small enough that there is (at
least) one face of the cube which is not intersected by any
of the three cylindrical pieces of K. Then in the 3D billiard
with arbitrary velocities (not restricted to be parallel to E)
there is a planar channel� [23] lying along any such face.
Now restricting particle velocities to be parallel to E, we

see that each planar channel � in the 3D periodic billiard
induces a rectangular channel in the 2D quasiperiodic LG,
given by the intersection of E with �. As in the periodic
LG [24,25], additional channels may appear as the radius
decreases; for example, Fig. 3 shows an additional planar
channel at an angle �=4.
This generalizes to quasiperiodic LGs in m> 2 dimen-

sions with ðm� 1Þ-dimensional principal horizons [46].
Thus our construction shows the generic occurrence of
channels in quasiperiodic Lorentz gases when the obstacles
have sufficiently small radius.
As r increases, the channels are blocked one by one, as

the billiard obstacles expand sufficiently to intersect the
planes defining the channels. When the billiard obstacles
are large enough to cross the faces of the cube, their
periodic images must also be taken into account as addi-
tional obstacles in the simulations; for this reason, the
algorithm is most efficient when the obstacles are small,
which is the most difficult case to treat using standard
methods.
Diffusive properties.—Our construction immediately

gives a direct simulation method for quasiperiodic billiard
dynamics. As an example, we numerically study diffusive
properties of the 2D quasiperiodic LG projected from three
dimensions: We place 106 (noninteracting) particles with
uniform positions in the 3D unit cube C, and unit-speed
velocities with uniform directions parallel to the plane E
with unit normal vector [1=ð�þ 2Þ, �=ð�þ 2Þ,
�=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ 2
p Þ], where � :¼ ð1þ ffiffiffi

5
p Þ=2.

Figure 4 plots h�xðtÞ2i=t, to emphasize deviations from
normal diffusion [47], for different radii r of the billiard
obstacles.We see that for small radii, this quantity increases
logarithmically in time, indicating (weak) superdiffusion
h�xðtÞ2i � t lnt, as in the periodic case, corresponding to
the presence of channels in the quasiperiodic LG.
However, the convergence to this limiting regime is very

slow. We interpret this as being due to regions adjacent to
the infinite channels in which free paths are unbounded, but
not infinite (‘‘locally finite’’); this phenomenon does not
occur in periodic models. For short times, the effective

FIG. 3 (color online). 2D quasiperiodic LG embedded in a 3D
cube, with notation as in the text.
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width of the channel is thus larger, giving a decreasing
effective superdiffusion coefficient as time increases, and
hence the curvature visible in Fig. 4. These regions are
always associated with channels, except exactly at the
critical radius r ¼ rc, when all channels are blocked, but
free paths are still unbounded, as we will discuss else-
where; we find normal diffusion in this case [46].

As the obstacle radius, r, increases, the geometry of the
quasiperiodic LG, and hence the diffusive behavior, under-
goes qualitative changes. At r ’ 0:26, the obstacles begin
to overlap [46]. In this model, this overlap occurs before
the last planar channel is blocked, so that we expect super-
diffusion; however, we are unable to detect this numeri-
cally, and the diffusion appears normal already for
r ¼ 0:20 (with a channel, but not overlapping). In the
Penrose LG, on the contrary, all channels are blocked
before any obstacles overlap.

At the critical radius rc ’ 0:3, all channels are blocked.
For r > rc, we observe an initial subdiffusive regime, with
a crossover to normal diffusion at long times, as in the
random LG; see Fig. 4(b). Finally, there is a radius r ’
0:428 at which particles become confined in bounded
regions. Note that these values of r can be calculated
analytically, but the results are complicated functions of
the geometrical parameters.

Figure 5(a) shows representative trajectories for r ¼
0:18, highlighting the channels within the quasiperiodic
LG. There are channels in three directions, corresponding
to those in Fig. 3—two along two perpendicular, vertical
faces of the cube, and one at an angle of �=4. Figure 5(b)
shows a single trajectory for large r, close to the percola-
tion threshold at which diffusion ceases. Narrow bottle-
necks between cavities of different sizes are visible, which
we interpret as the origin of the observed slow diffusive
behavior.
Penrose Lorentz gas.—Our construction may also be

carried out for more realistic models, such as a Penrose
LG, formed by placing discs at each vertex of a Penrose
tiling [34]. This structure is obtained by projecting a 5D
lattice onto a 2D subspace E [38,39], so that P is a 5D
cylinder, the product of a 3D polytope W [38] with a
2D ball.
Our results show that the Penrose LG must have chan-

nels for obstacle radius r less than a critical value rc. To
calculate rc, we must find when at least one 4D (hyper-)
face of the 5D hypercube C is not touched by K. Thus, for
each face of C, we find the minimum distance (in the
direction of E) to all vertices pi of W. The maximum
over all faces then seems to be enough to calculate rc, or
at least a lower bound [46]. For the Penrose tiling, the
symmetry implies that many of these distances are equal,

and we obtain rc ¼ L=ð2�2Þ, where � ¼ ð1þ ffiffiffi

5
p Þ=2 and L

is the side length of the rhombi forming the tiling, which
we have confirmed numerically [46].
In summary, we have introduced a construction to

embed quasiperiodic lattices into a unit cell in a higher-
dimensional space, which shows that quasiperiodic
Lorentz gases generically have channels for small obstacle
radii, and which provides a direct simulation method for
dynamics in quasiperiodic structures. These systems ex-
hibit a range of diffusive properties, including super- and

FIG. 4 (color online). h�xðtÞ2i=t as a function of t for different
radii r (labelled), for the quasiperiodic LG in two dimensions
projected from three dimensions. (a) Semilogarithmic scale. The
thin solid lines show fits of the form hxðtÞ2i ¼ CðrÞt lntþDðrÞt.
(b) Logarithmic scale; the inset emphasizes curvature.

FIG. 5 (color online). Representative trajectories of 2D
quasiperiodic LG projected from three dimensions. The gray
(color) scale indicates time. Blank, circular regions correspond
to the billiard obstacles, whose positions are identical in the
two subfigures. (a) r ¼ 0:18; several initial conditions.
(b) r ¼ 0:425; single initial condition.
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subdiffusion, depending on the geometry. We expect that
our construction can be profitably applied to further phe-
nomena in quasiperiodic systems.
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Note added in proof.—During revision of the proofs, the
authors found previous results which are apparently re-
lated, e.g., [48]. However, in those references, starting
from any higher-dimensional periodic system, a quasilat-
tice of points is obtained by a cut procedure, and structural
properties are studied; whereas we construct specific
higher-dimensional billiard models in order to study
dynamics.
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and F. Höfling, J. Non-Cryst. Solids 357, 472 (2011).
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