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We numerically demonstrate the feasibility of kinematic fast dynamos for a class of time-periodic

axisymmetric flows of conducting fluid confined inside a sphere. The novelty of our work is in considering

the realistic flows, which are self-consistently determined from the Navier-Stokes equation with specified

boundary driving. Such flows can be achieved in a new plasma experiment, whose spherical boundary is

capable of differential driving of plasma flows in the azimuthal direction. We show that magnetic fields are

self-excited over a range of flow parameters such as amplitude and frequency of flow oscillations, fluid

Reynolds (Re) and magnetic Reynolds (Rm) numbers. In the limit of large Rm, the growth rates of the

excited magnetic fields are of the order of the advective time scales and practically independent of Rm,

which is an indication of the fast dynamo.

DOI: 10.1103/PhysRevLett.111.125001 PACS numbers: 52.30.Cv, 52.35.Py, 52.65.Kj

It is now widely accepted that the observed magnetic
fields of various astrophysical systems are due to the
dynamo mechanism associated with the flows of highly
conducting fluids in their interiors [1,2]. In most of these
systems the dynamos appear to be fast; i.e., they act on the
fast advective time scales of the underlying flows, rather
than on the slow resistive or intermediate time scales [3].
The astrophysical relevance of fast dynamos stimulated
intensive theoretical and numerical studies (Refs. [4,5] and
references therein); however, they have never been studied
experimentally. In this work we present a numerical
analysis of fast dynamos in a class of spherical boundary-
driven flows that can be obtained in a real plasma
experiment.

Several conditions are required for a fast dynamo action.
First, the fast dynamos only operate at high values of
magnetic Reynolds number Rm (usually, Rm * 103),
which is the ratio of the resistive and advective time scales.
Second, the flow must be chaotic in order to yield a fast
dynamo [6,7]. Both these conditions are satisfied in astro-
physical flows, most of which are turbulent with extremely
high Rm. Achieving flows with high Rm is a major obst-
acle for experimental demonstration of fast dynamos, since
this requires a highly conducting, quickly flowing fluid
(for reference, the maximum value of Rm in existing liquid
metal experiments is Rm� 102).

Models with prescribed flows exhibiting fast dynamos
in the kinematic (linear) stage have been considered in the
literature for plane-periodic [8–11] and spherical shell
[12–15] geometries. The common feature of the dynamo
fields emerging in these models is that at high Rm their
structure is dominated by the rapidly varying small-scale
fluctuations. The relationship between the small-scale
dynamo and large-scale generation of flux is perhaps the
most perplexing issue in dynamo theory. As shown recently
in Refs. [16,17], an organized large-scale magnetic field can

be produced in dynamo simulations if a global shear is also
included into a helical plane-periodic flow.
More realistic models of dynamos include flows which

are self-consistently determined from the Navier-Stokes
equation with the appropriate forcing terms [18–20]. In
this case, the properties of fast dynamos (in both the linear
and nonlinear stages) strongly depend on the magnetic
Prandtl number Pm ¼ �=�, the ratio of kinematic viscosity
� to resistivity � of the medium. In astrophysical applica-
tions of fast dynamo theory two different limits are recog-
nized: Pm � 1 (solar convective zone, protoplanetary
accretion disks) and Pm � 1 (solar corona, interstellar
medium, galaxies and galaxy clusters). In the former limit,
the fluid is essentially inviscid on all magnetic scales, and
the resulting dynamo is induced by the ‘‘rough’’ (highly
fluctuating) velocity field [21,22]. In the latter limit, the
small velocity scales are dissipated more efficiently than
the small magnetic scales, and the dynamo develops on the
‘‘smooth’’ (large scale) velocity field [21,23]. The latter
circumstance is important in our study: the case of Pm � 1
cannot be addressed without extensive numerical simula-
tions of magnetohydrodynamic turbulence, but the case of
Pm � 1 can be modeled by a simple laminar, yet chaotic
flow producing a fast dynamo structure.
Our present study is motivated by the successful initial

operation of the Madison plasma dynamo experiment
(MPDX), which is designed to investigate dynamos in
controllable flows of hot, unmagnetized plasmas [24]. In
the MPDX, plasma is confined inside a 3 m spherical vessel
by an edge-localized multicusp magnetic field. A unique
mechanism for driving plasma flows in the MPDX allows
an arbitrary azimuthal velocity to be imposed along the
boundary [25]. The most advantageous property of plasma
is the ability to vary its characteristics by adjusting experi-
mental controls. Indeed, the confinement properties of this
device indicate that the low density, high temperature
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plasmas can be obtained with values of Rm� 104 and
Pm� 102 required for a fast dynamo in a laminar flow.

The scope of our study is to numerically demonstrate
kinematic fast dynamos for a class of time-periodic,
boundary-driven, axisymmetric flows found self-consistently
from the Navier-Stokes equation. In a sense, these flows are
an adaptation of the plane-periodic Galloway-Proctor flow
[8] to the geometry of a full spherewith a viable driving force.
Several models of flows resulting in fast dynamos have been
considered in the spherical shells [12–15,20], but analogous
studies for a full sphere are lacking. Furthermore, in all
previous studies the flows are either prescribed or driven by
artificial forces, so they are nonphysical and not reproducible
in a real experiment. The class of flows considered in our
study is more practical, since it can be realized in the MPDX
by applying the corresponding plasma driving at the edge.

As a framework, we use incompressible magnetohydro-
dynamics, whose dimensionless equations are

@v

@t
¼ 1

Re
r2v� ðv � rÞv�rp; (1)

@~v

@t
¼ 1

Re
r2~v� ð~v � rÞv� ðv � rÞ~v�r~p; (2)

@B

@t
¼ 1

Rm
r2Bþr� ðv�BÞ; (3)

0 ¼ r � v ¼ r � ~v ¼ r � B: (4)

Normalized quantities are defined using the radius of the
sphere R0 as a unit of length, the typical driving velocity at
the edge V0 as a unit of velocity, the turnover time R0=V0 as
a unit of time, the plasma mass density �0, the kinematic
viscosity �, and the magnetic diffusivity � (all three
assumed to be constant and uniform). Normalization of
the magnetic field B is arbitrary since it enters Eq. (3)
linearly. The fluid Reynolds number Re and the magnetic
Reynolds number Rm are introduced as Re ¼ R0V0=�,
Rm ¼ R0V0=�, and their ratio determines the magnetic
Prandtl number Pm ¼ Rm=Re. In this study we consider
flows in a range of Re ¼ 100–500, Rm ¼ 103–105 and
Pm ¼ 2–500, which overlaps with MPDX operating
regimes. In these regimes, the MPDX plasma is expected
to have relatively small Mach numbers M ¼ V0=Cs �
0:1–0:3, where Cs is the ion sound speed. This justifies
the use of the incompressible model.

Equations (1)–(3) require appropriate boundary condi-
tions. Equation (1) is the Navier-Stokes equation and we
use it to find equilibrium flows v. Since we are interested in
the kinematic stage of a dynamo, we do not include the
Lorentz force from the dynamo field in Eq. (1). We con-
sider only axisymmetric, time-periodic equilibrium flows
driven by the following boundary condition (Fig. 1):

vjr¼1 ¼ ðsin2�þ a sin� cos!tÞe�; 0 � � � �; (5)

in a spherical system of coordinates (r, �, �). As shown
below, for some values of oscillation amplitude a and
frequency! the corresponding equilibriumflows are hydro-
dynamically stable and can lead to fast dynamos. Equation
(2) is the linearized Navier-Stokes equation for the flow
perturbations ~v. It is used to establish the hydrodynamic
stability properties of the equilibrium flows v. Assuming an
impenetrable, no-slip wall, we have ~vjr¼1 ¼ 0. Equation (3)
is the kinematic dynamo problem with a velocity field v
satisfying Eqs. (1) and (5). The choice of magnetic bound-
ary conditions can strongly affect the dynamo action [26].
In our present study we assume the nonferritic, perfectly
conducting wall, coated inside with a thin insulating
layer. This model reflects the actual boundary in the
MPDX. Corresponding conditions forB areBrjr¼1 ¼ ðr�
BÞrjr¼1 ¼ 0; i.e., the normal components of both the mag-
netic field and current are zero at the boundary.
We briefly describe the numerical methods used for

solving Eqs. (1)–(3). The divergence-free fields v, ~v,
and B are expanded in a spherical harmonic basis [27]
(the resulting equations can be found, for example, in
Ref. [28]). The radial discretization of these equations is
based on a Galerkin scheme with Chebyshev polynomials
[29]. This discretization provides fast convergence: trun-
cation at Np ¼ 100 spherical harmonics and Nr ¼ 100

radial polynomials gives 4 converged significant digits in
the dynamo growth rate for Rm ¼ 50 000. To solve the
discretized Eq. (1) for a time-periodic equilibrium velocity
v we apply a Fourier time transform to v and use the
iterative scheme analogous to the one from Ref. [28].
Since the equilibrium velocity is axisymmetric, modes
with different azimuthal numbers m are decoupled in
Eqs. (2) and (3). For a time-periodic flow v, these equations
constitute the standard Floquet eigenvalue problems [30].

Equation (3) has a solution of the formBðr; tÞ ¼ e�t ~Bðr; tÞ,
where � is the complex eigenvalue (Floquet exponent)

and ~Bðr; tÞ is time periodic with a period T ¼ 2�=!
of the flow [solution to Eq. (2) is analogous]. We solve
Eqs. (2) and (3) in discretized form using the Arnoldi
iteration method, which finds the eigenvalues with the
largest real part (growth rate). More details on the
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FIG. 1. Time-periodic boundary-driving azimuthal velocity v�

from Eq. (5) with oscillation amplitude a ¼ 2 as a function of
polar angle � at several moments over a period T ¼ 2�=!.
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application of this method to a kinematic dynamo problem
are given in Ref. [31].

An example of the calculated equilibrium velocity is
shown in Fig. 2(a). The flow is axisymmetric with well-
defined laminar structure at every instant of time. However,
the paths of fluid elements in such flow are chaotic (Fig. 3).
From a practical point of view, it is important to have a
hydrodynamically stable flow, so the flow properties do not
change over the course of the experiment and the predicted

fast dynamos can be obtained. We study the linear stability
of the flows by solving Eq. (2). The stability boundaries
in the parameter space of (!, a, Re) are shown in Fig. 4.
They are determined by nonaxisymmetric modes only
(m ¼ 1–4), the axisymmetric modes (m ¼ 0) are always
stable for the considered flows. The stable region becomes
smaller as the fluid Reynolds number Re increases. We
note that the steady counterrotating flow corresponding to
the boundary drive with a ¼ 0 is linearly unstable when
Re> 120. The time-periodic dependence of the flow plays
a twofold role: first, it stabilizes the fluid motion, and
second, it leads to the chaotic streamlines required for
the fast dynamo mechanism. The former is analogous to
parametric stabilization observed in Kapitza’s pendulum—
an inverted pendulum with the pivot point vibrating in the
vertical direction [32].
Figure 5 summarizes the results of our kinematic

dynamo studies. The figure shows the dependences of the
dynamo growth rate �r (real part of the eigenvalue) on
magnetic Reynolds number Rm for different flow parame-
ters. It is apparent that in most cases the dependences tend
to level off with increasing Rm. Such asymptotic behavior
is a signature of fast dynamo action. Although none of
these cases reach their asymptotic state completely, they

(a) (b)

FIG. 2 (color online). Structure of (a) equilibrium velocity v
and (b) fastest dynamo eigenmode B (with azimuthal number
m ¼ 1) at four consecutive moments over a period T ¼ 2�=!.
The flow parameters are a¼2, !¼0:6, Re¼300, Rm ¼ 30 000,
the respective dynamo eigenvalue is �¼0:059627þ0:200510i.
Exponential growth and rotation associated with � are removed
from the images of B by a suitable normalization (the resulting
B is periodic with period T). The left half of each figure shows
the modulus of the poloidal (lying in meridional plane) compo-
nent, the right half shows a level plot of the azimuthal compo-
nent. In velocity figures, contours with arrows are stream lines
of poloidal velocity vpol, dashed curves denote levels of v� < 0.

In dynamo figures, lighting is used to emphasize the small-scale
structure of the dynamo field. The listed parameters correspond
to the MPDX fully ionized hydrogen plasma with the density
n0 � 2� 1012 cm�3, the ion temperature Ti � 1 eV, the elec-
tron temperature Te � 100 eV, the typical driving velocity V0 �
12:5 km=s, the driving frequency !=2� � 0:8 kHz, and the
dynamo growth rate �r � 500 s�1 (see Ref. [24] for details).

a = 0.1a = 0 a = 2

FIG. 3 (color online). Poincaré plots for the equilibrium flow v
for Re ¼ 300, ! ¼ 0:6, and three amplitudes a. Points are the
footprints of trajectories of six fluid parcels shown in different
colors at one meridional plane. Each trajectory is followed
for 1000T.
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FIG. 4. Hydrodynamic stability boundaries of the equilibrium
flow v on the plane of driving parameters (!, a) for different
fluid Reynolds numbers Re. For every Re, curves are composed
of several azimuthal modes m (typically, m ¼ 1–4). The shown
region of parameters is stable for Re< 120.

PRL 111, 125001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

125001-3



still suggest that fast dynamos are excited in the system.
We note that the growth rates do not saturate until
Rm� 105, whereas in the Galloway-Proctor flow [8] this
occurs at Rm� 102–103. A possible explanation was pro-
posed in Ref. [12]: in the spherical geometry the azimuthal
number m is restricted to integer values only, but in the
plane-periodic geometry the corresponding wave number
is continuous and can be optimized to yield the largest
growth rate. This also may explain why the typical
critical Rm required for the dynamo onset in our model
(Rmcr � 103) is much higher than the one in the Galloway-
Proctor flow (Rmcr � 1). Note that the value of Rmcr � 103

can be achieved in the MPDX by producing plasma with
the electron temperature Te � 10 eV and the driving
velocity V0 � 10 km=s.

The asymptotic values of the dynamo growth rates are
determined by the flow properties. Most clearly this can be
seen by the changing driving frequency ! in Fig. 5(c). The
largest value of �r � 0:1 (in units of inverse turnover time
V0=R0) is achieved with the largest frequency ! ¼ 1:5.
Simulations show that for ! * 1:7 (at Re ¼ 300, a ¼ 2)
the flow becomes hydrodynamically unstable, and our

assumption of flow axisymmetry breaks. Another interest-
ing point is that the fastest dynamo modes correspond to
different azimuthal numbers m (m ¼ 1–3) at different
driving frequencies !. This is likely related to details of
the equilibrium flow structure: as shown in Ref. [15], the
optimum m depends on the number of poloidal flow cells,
which in our case varies with !.
The dynamo eigenmode is shown in Fig. 2(b). Due to

our choice of the boundary conditions the magnetic field is
fully contained inside the sphere. This is usually referred to
as a hidden dynamo, because it does not exhibit itself
outside the bounded volume. The induced magnetic field
has a fast-varying, small-scale structure. Such field is often
characterized by the magnetic Taylor microscale, defined

as the inverse of the effective wave number keff ¼ ðhjr �
Bj2i=hjBj2iÞ1=2, where h� � �i denotes volume averaging.
Figure 6 shows that for large Rm the scaling law for keff
is approaching keff � Rm1=2. Similar scaling is also
observed in some slow dynamos [33]. The difference
between the slow dynamo as in Ref. [33] and the fast
dynamo under consideration is that in the former case the
magnetic structures with spatial scales of the order of

Rm�1=2 occur only in a small region near the separatrix
of the flow, whereas in the latter case these structures are
seen over a much larger region.
In conclusion, we numerically demonstrated the possi-

bility of fast dynamo action in spherical boundary-driven
time-periodic flows. This is an important step towards
realizing the fast dynamos for the first time in plasma
experiments such as the MPDX.
The authors wish to thank S. Boldyrev, B. P. Brown,

F. Cattaneo, and E. Zweibel for valuable discussions. This
work is supported by the NSF Award No. PHY 0821899,
PFC Center for Magnetic Self Organization in Laboratory
and Astrophysical Plasmas.

[1] H. K. Moffatt, Magnetic Field Generation in Electrically
Conducting Fluids (Cambridge University Press,
Cambridge, England, 1978).

0

0.02

0.04

0.06

0.08

 

 

Re = 100
Re = 200
Re = 300
Re = 400
Re = 500

 

 

a = 1
a = 1.5
a = 2
a = 2.5
a = 3

0 10 000 20 000 30 000 40 000 50 000 

 

ω = 0.3, m = 1
ω = 0.6, m = 1
ω = 0.9, m = 2
ω = 1.2, m = 3
ω = 1.5, m = 2

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

0.1

Rm

γ
r

γ
r

γ
r

(a) a=2,  ω=0.6, m=1

 

(c) Re=300, a=2

)) 300 ω 0 6 =(b) Re=300, ω=0.6, m=1

FIG. 5. Dynamo growth rate �r of the fastest mode as a
function of Rm for different values of (a) fluid Reynolds number
Re, (b) oscillation amplitude a, (c) driving frequency !. Note
that in (a) and (b) the fastest azimuthal modes are always m ¼ 1,
while in (c) they vary with !.

0 50 000 100  000
0

0.02

0.04

0.06

0.08
γ

r

k
eff

2

Rm

Rm

0.1×γ
i

FIG. 6. Square of the effective wave number in a dynamo
eigenmode k2eff normalized by Rm and corresponding dynamo

eigenvalue � ¼ �r þ i�i as functions of Rm. Flow parameters
are Re ¼ 300, a ¼ 2, ! ¼ 0:6.

PRL 111, 125001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

125001-4
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