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We find the general solution to the time-dependent Hartree-Fock problem for the Gross-Neveu models,

with both discrete (GN2) and continuous [Nambu-Jona-Lasinio (NJL2)] chiral symmetry. We find new

multibaryon, multibreather, and twisted breather solutions, and show that all GN2 baryons and breathers

are composed of constituent twisted kinks of the NJL2 model.
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Self-interacting fermion systems describe a wide range
of physical phenomena in particle, condensed matter, and
atomic physics [1–10]. Applications include solitons, exci-
tons, polaritons, breathers, and inhomogeneous phases in
superconductors, conducting polymers, liquid crystals,
particle physics, and cold atomic gases, and also illustrate
the widespread phenomenon of induced fermion number
[11]. The Gross-Neveu models [GN2 and Nambu-Jona-
Lasinio (NJL2)] in (1þ 1)-dimensional quantum field
theory describe N species of massless, self-interacting
Dirac fermions [12]:

LGN ¼ �c i6@c þ g2

2
ð �c c Þ2; (1)

LNJL ¼ �c i6@c þ g2

2
½ð �c c Þ2 þ ð �c i�5c Þ2�: (2)

These are soluble paradigms of symmetry breaking
phenomena in strong interaction particle physics and con-
densed matter physics [1,13]. In the ’t Hooft limit N ! 1,
Ng2 ¼ const, semiclassical methods become exact, as pio-
neered in this context by Dashen, Hasslacher, and Neveu
(DHN) [14,15]. Classically, the GN2 model has a discrete
chiral symmetry, while the NJL2 model has a continuous
chiral symmetry. At finite temperature and density, and at
large N, these models exhibit inhomogeneous phases with
crystalline condensates, directly associated with chiral
symmetry breaking [16]. The basic physics of these GN
phases is the Peierls effect of condensed matter physics
[3,17–19]. This analysis of equilibrium thermodynamics is
based on exact spatially inhomogeneous solutions to the
gap equation, or equivalently the Hartree-Fock problem,
which solves the Dirac equation subject to constraints on
the scalar and pseudoscalar condensates [16,20]. Here, we
extend these results to the complete exact solution of the
time-dependent Hartree-Fock (TDHF) problem, relevant
for scattering processes, transport phenomena, and non-
equilibrium physics:

½i6@� Sðx; tÞ�c � ¼ 0;

S ¼ �g2
Xocc
�

�c �c � for GN2;

(3)

½i6@� Sðx; tÞ � i�5Pðx; tÞ�c � ¼ 0 for NJL2;

S ¼ �g2
Xocc
�

�c �c �; P ¼ �g2
Xocc
�

�c �i�5c �:
(4)

We solve these TDHF problems in full generality, describ-
ing the dynamics, including scattering, of nontrivial topo-
logical objects such as kinks, baryons, and breathers.
Surprisingly, we found that the most efficient strategy is
to solve the (apparently more complicated) NJL2 model
first, and then obtain GN2 solutions by imposing further
constraints on these solutions. This reveals, for example,
that the GN2 baryons and breathers found by Dashen,
Hasslacher, and Neveu [14] are in fact bound objects of
twisted NJL2 kinks, and that the scattering of GN2 baryons
and breathers can be deduced from the scattering of twisted
kinks. This includes new breather and multibreather
solutions in NJL2, as well as new multibaryon and multi-
breather solutions for GN2.
We stress that while it is well known that the classical

equations for the GN2 and NJL2 models are closely related
to integrable models [21], this fact is only directly useful
for the solution of the TDHF problem for the simplest case
of kink scattering in the GN2 model, which reduces to the
integrable sinh Gordon equation. The more general self-
consistent TDHF solutions to Eqs. (3) and (4) involving
twisted kinks, baryons, and breathers do not satisfy the sinh
Gordon equation; instead, we find a general ‘‘master equa-
tion’’ [see Eq. (8)], whose solution reduces to a finite
algebraic problem solvable in terms of determinants.
We also stress that these more general solutions require a

self-consistency condition relating the filling fraction of
valence fermion states to the parameters of the condensate
solution, as for the static GN2 baryon [14], the static
twisted kink [22], and the GN2 breather [14]. For our
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time-dependent solutions, this important fact means that
during scattering processes, there is nontrivial backreac-
tion between fermions and their associated condensates
and densities [23]. Kink scattering in the GN2 model,
described by sinh Gordon solitons [24,25], is much
simpler, as there is no self-consistency condition or
backreaction.

With Dirac matrices �0 ¼ �1, �1 ¼ i�2, and �5 ¼
��3 and light-cone coordinates (note �z is not the complex
conjugate of z) z ¼ x� t, �z ¼ xþ t, @0 ¼ �@� @, and
@1 ¼ �@þ @, the Dirac equation in Eq. (4) is

2i �@c 2 ¼ �c 1; 2i@c 1 ¼ ���c 2; � � S� iP:

(5)

Write the complex potential � and continuum spinor c � :

� ¼ N
D

; c � ¼ eið� �z�z=�Þ=2

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p �N 1

�N 2

� �
; (6)

where D is real, and the complex light-cone spectral
parameter � is related to the energy E and momentum k
as k ¼ ð1=2Þð� � ð1=�ÞÞ, E ¼ �ð1=2Þð� þ ð1=�ÞÞ, in units
of m, the dynamically generated fermion mass. The ansatz
for c � anticipates the fact that the potential � is

transparent.
We solve Eq. (5), and associated TDHF consistency

conditions, using an ansatz method, positing a decompo-
sition with a finite number n of simple poles:

N 1;2ð�Þ ¼ N ð0Þ
1;2 þ

Xn
i¼1

1

� � �i
N ðiÞ

1;2: (7)

Inserting Eqs. (6) and (7) into the Dirac equation (5), and

matching powers of � , we learn that the residues N ðiÞ
1;2

must satisfy various sum rules, the self-consistency of
which further requires D and N to satisfy the master
equation [26] (see Supplemental Material [27]):

4@ �@ lnD ¼ 1� j�j2: (8)

Furthermore, the following equations must hold for all
i ¼ 1; . . . ; n,

2iðD �@� �@DÞN ðiÞ
2 � �iðDN ðiÞ

2 �NN ðiÞ
1 Þ ¼ 0;

2i�iðD@� @DÞN ðiÞ
1 þDN ðiÞ

1 �N �N ðiÞ
2 ¼ 0:

(9)

The residues of c � at the poles � ¼ �i provide normal-

izable bound state spinor solutions:

c ðiÞ ¼ 1

DVi

�iN
ðiÞ
1

�N ðiÞ
2

 !
; Vi � e�ið�i �z�z=�iÞ=2: (10)

An alternative set of normalizable bound state spinors
comes from c � at the complex conjugate poles ��i :

�ðiÞ ¼ V�
i

D
��i N 1ð��i Þ
�N 2ð��i Þ

� �
: (11)

These two sets of bound states are linearly related c ðiÞ ¼P
j�ij�

ðjÞ. The condition that D is real and has no zeroes

restricts the matrix � to the form

�ij ¼ i�̂ij=ð��j Þ2; (12)

where �̂ is a positive definite Hermitean matrix. Together
with Eq. (7), we obtain a finite dimensional algebraic
system:

N 1ð��j Þþ
X
i;k

1

�ið���j þ�iÞVi�ikV
�
k�

�
kN 1ð��k Þ¼D;

N 2ð��j Þþ
X
i;k

1

���j þ�i
Vi�ikV

�
kN 2ð��k Þ¼N :

(13)

We have found a remarkably simple solution to this alge-
braic system, which yields a compact determinant expres-
sion for all the ansatz quantities in the TDHF solution:

D ¼ detð!þ BÞ; N ¼ detð!þ AÞ;
N 1ð�Þ ¼ detð!þ CÞ; N 2ð�Þ ¼ detð!þDÞ;

(14)

with matrices

Bij ¼
iV�

i Vj

�j � ��i
¼ ��i

�j
Aij; Cij ¼ � � ��i

� � �j
Bij ¼ ��i

�j
Dij;

(15)

where ! is a positive definite Hermitean matrix: !ij ¼
��i �̂

�1
ij �j. This gives the complete solution to the Dirac

equation for time-dependent transparent (complex) poten-
tial �. In the nonrelativistic limit, writing j�j � 1þ V,
with V � 1, the master equation (8) reduces to the known
Kay-Moses ‘‘log det’’ form of the general transparent static
Schrödinger potential [28]

VðxÞ¼�@2x lndetð1þAÞ; Aij¼ ffiffiffiffiffiffiffiffiffi
aiaj

p eð�iþ�jÞx

�iþ�j

(16)

and its time-dependent Schrödinger generalization [29].
Our solution (14) and (15) also provides a new closed-
form solution to the finite algebraic problem, found
recently in Ref. [20], for the static transparent NJL2

Dirac equation.
We now show that this solution also gives a self-

consistent solution to the fully quantized TDHF problem
(4), provided certain filling-fraction conditions are satisfied
by the combined soliton-fermion system, generalizing
the conditions already found by DHN, Jackiw-Rebbi, and
Shei [11,14,22]. Consider first the induced fermion density
in the Dirac sea. Introducing a cutoff scale �,

PRL 111, 121602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

121602-2



�ind¼
Z �

1=�

d�

2	

�2þ1

2�2
ðc y

� c ��1Þ

¼
Z �

1=�

d�

2	

1

2�2D2
½�2ðjN 1j2�D2ÞþjN 2j2�D2�:

(17)

The pole ansatz (7), a partial fraction decomposition, and
the known asymptotic behavior of the ansatz functions
combine to show that the linear and logarithmic divergent
terms cancel, leading to the finite result

�ind ¼ i

4	

X
i;j

��i �jN
ðiÞ�
1 N ðjÞ

1 þN ðiÞ�
2 N ðjÞ

2

D2V�
i Vj

ð�̂�1Þij ln�
�
i

�j
:

(18)

For consistency with axial current conservation, this must
be canceled by the contribution from the discrete bound
states [26]. The physical bound state spinors are in general
a (orthonormal) superposition of the basis bound states

(10) ĉ ðiÞ ¼ P
jCijc

ðjÞ, where we find that the matrix C is

directly related to the matrix �̂ as 2C�̂Cy ¼ 1. The
density from the bound states (with occupation fractions

k) is

�b ¼
X
i;j

��i �jN
ðiÞ�
1 N ðjÞ

1 þN ðiÞ�
2 N ðjÞ

2

D2V�
i Vj

X
k


kC
�
kiCkj: (19)

Then, the condition �ind þ �b ¼ 0 leads to a consistency
condition for the filling fractions 
k which can be
written as


k ¼ 1

2	
eigenvalues of ðCy�1M�̂�1C�1 þ H:c:Þ; (20)

where M is the diagonal matrix Mij ¼ �i�i;j lnð���j Þ.
Having found a candidate solution with vanishing fermion
density, we now consider the TDHF self-consistency
conditions in Eq. (4). Equations (6) and (7) imply the
condensate expectation value

h �c c i � ih �c i�5c i ¼ ��

	
ln�� i

2	

X
i;j

��i N
ðiÞ�
1

V�
i D

N ðjÞ
2

VjD

� ð�̂�1Þij ln�
�
i

�j
: (21)

The sum rules satisfied by the residuesN ðiÞ
1;2 guarantee UV

and IR convergence of the latter terms, while the first term
gives self-consistency from the vacuum gap equation

ðNg2=	Þ ln� ¼ 1. The second term must be canceled
against the bound state contribution, and remarkably this
is satisfied, provided the previously found filling-fraction
condition [Eq. (20)] holds. This proves full TDHF
self-consistency for the NJL2 system [Eq. (4)]. For GN2,
we impose reality of the condensate � and relax the
consistency condition on the pseudoscalar condensate, as
discussed below.
We illustrate the TDHF solution [Eqs. (14), (15), and

(20)] with some examples. We write �j in terms of phase

and boost parameters: �j ¼ �e�i�j=�j. With just one pole,

B ¼ e2x sin�, A ¼ e�2i�B, and � ¼ ð1þ e�2i�e2x sin�Þ=
ð1þ e2x sin�Þ, which is Shei’s twisted kink for the NJL2

model [22], with filling fraction 
 ¼ �=	. When � ¼
�	=2, we get a real solution of the GN2 model, the usual
kink or antikink.With two poles, we obtain real�, forGN2,
either by choosing �1 ¼ �2 ¼ 	=2, which gives

�¼1�U1�U2þð�1��2

�1þ�2
Þ2U1U2

1þU1þU2þð�1��2

�1þ�2
Þ2U1U2

; Ui��ijVij2
2sin�i

; (22)

describing scattering of two kinks, or alternatively by
choosing �1 ¼ ���2 , which means�2 ¼ 	��1 and�1 ¼
�2 ( ¼ 1 for rest frame). Then, V2 ¼ V�

1 and

B¼ U1
ie�i�1

2 ðV�
1 Þ2

� iei�1

2 V2
1 U1

0
@

1
A; Aij¼

Bij

eið�iþ�jÞ : (23)

Choosing ! ¼ 1, we obtain the DHN GN2 baryon [14]

� ¼ 1þ 2 cosð2�1ÞU1 þ cos2ð�1ÞU2
1

1þ 2U1 þ cos2ð�1ÞU2
1

¼ 1þ y tanhðy �x� bÞ � y tanhðy �xþ bÞ; (24)

where y ¼ sin�1 ¼ tanhð2bÞ, and the x origin has been
shifted. The GN2 consistency condition leads to filling
fractions 
1 ¼ 2�1=	 and 
2 ¼ 1. This shows that the
DHN GN2 baryon is in fact a bound object of two twisted
kinks with filling fractions (which also determine the
baryon size) related to the twist angle. Furthermore, the
mass of the DHN baryon is related to the masses of
the constituent twisted kinks as M ¼ Mkinkð�1Þ þ
Mkinkð	��1Þ ¼ ð2N=	Þ sin�1. Choosing instead an
off-diagonal mixing matrix

! ¼ sec
 tan

tan
 sec


� �
(25)

leads to the DHN GN2 breather [14]

� ¼ 1þ 2 sec
 cos2�1U1 � 2 tan
 sin�1 cosð2�t cos�1ÞU1 þ cos2�1U
2
1

1þ 2 sec
U1 þ 2 tan
 sin�1 cosð2�t cos�1ÞU1 þ cos2ð�1ÞU2
1

with filling fractions 
1;2 ¼ ð1=2	Þ½ð�1 þ�2Þ 	 ð�1 ��2Þ sec
�. Thus, the DHNGN2 breather is also a bound object of
two twisted kinks, with filling fractions related to the twist angles.
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Using the off-diagonal form (25) for!, but not imposing
the reality condition �1 þ�2 ¼ 	, we obtain a new
twisted breather solution to the NJL2 model, shown in
Fig. 1. At the three pole level, we find the scattering of
three kinks if ! ¼ 1. These are GN2 kinks if �1 ¼ �2 ¼
�3 ¼ 	=2, and twisted NJL2 kinks otherwise. The scatter-
ing of a GN2 baryon and a kink is obtained by choosing
�1 ¼ ���2 , and the scattering of a breather with a kink is

obtained by choosing the off-diagonal form (25) for a
2� 2 sub-block of !. New breather solutions are obtained
by choosing �1 ¼ �2 ¼ �3 and a more general 3� 3
off-diagonal form of !. At the four pole level, in addition

to the scattering of four (in general twisted) kinks, we can
combine the spectral parameters of the kinks pairwise, e.g.,
as �1 ¼ ���2 and �3 ¼ ���4 , to obtain the scattering of two
baryons [23]. Further choosing the corresponding 2� 2
sub-blocks of the mixing matrix ! to have the breather
form (25), we obtain the scattering of two GN2 breathers
[30]. Relaxing the pairwise reality conditions �1 þ�2 ¼
	 and �3 þ�4 ¼ 	, we obtain another new solution, the
scattering of two twisted NJL2 breathers, as shown in
Fig. 2. Choosing equal boost parameters �i and a more

FIG. 1. The real (upper) and imaginary (lower) parts of the
condensate �ðx; tÞ ¼ S� iP for the twisted NJL2 breather. Note
the periodic breathing in the time direction of both scalar and
pseudoscalar components, and that j�j2 ! 1 asymptotically.

FIG. 2. The real (upper) and imaginary (lower) parts of the
condensate �ðx; tÞ ¼ S� iP for the scattering of two twisted
NJL2 breathers. The objects breathe as they scatter, and j�j2 !
1 asymptotically.
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general off-diagonal mixing matrix !, we obtain a novel
four-breather solution in which all four twisted-kink con-
stituent kinks ‘‘breathe.’’ The pattern should now be clear.
Choosing different boost parameters �i gives a solution
describing scattering of twisted-kink constituents. If some
of the �i are equal, the solution describes bound combina-
tions of twisted-kink constituents, which are baryons if !
is diagonal and breathers if ! is off diagonal. The fermion
filling-fraction consistency condition (20) can always be
solved for any given choice of spectral parameters �i and
mixing matrix !.

In the special case where all �i ¼ 	=2, the Vi are real,
and we have Bij ¼ �i�jViVj=ð�i þ �jÞ, and Aij ¼ �Bij,

which agrees with the known multikink scattering solu-
tions of GN2 [24] and whose nonrelativistic limit agrees
with the Schrödinger results of Kay-Moses and Nogami-
Warke [28,29]. For NJL2, taking all �i ¼ 1, we obtain the

static solution � ¼ detð1þ ÂÞ= detð1þ B̂Þ, with

B̂ij ¼ eðx�xiÞ sin�iþðx�xjÞ sin�j

2 sinð�iþ�j

2 Þ
; Âij ¼

B̂ij

eið�iþ�jÞ ; (26)

where we have removed phases from the determinant,
which is possible for diagonal !. This is a compact solu-
tion for the algebraic system found recently in Ref. [20] for
self-consistent static multitwisted kinks in NJL2. Taking
the �i different, our solution [Eqs. (14), (15), and (20)]
gives the full time-dependent generalization.
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