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Decay in time of undriven weakly collisional kinetic plasma turbulence in systems large compared to

the ion kinetic scales is investigated using fully electromagnetic particle-in-cell simulations initiated with

transverse flow and magnetic disturbances, constant density, and a strong guide field. The observed

energy decay is consistent with the von Kármán hypothesis of similarity decay, in a formulation adapted

to magnetohydrodyamics. Kinetic dissipation occurs at small scales, but the overall rate is apparently

controlled by large scale dynamics. At small turbulence amplitudes the electrons are preferentially

heated. At larger amplitudes proton heating is the dominant effect. In the solar wind and corona the

protons are typically hotter, suggesting that these natural systems are in the large amplitude turbulence

regime.
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In turbulence theory, the standard cascade scenario
begins with energy supplied at a large (outer) scale, which
transfers by a series of approximately local-in-scale non-
linear interactions to smaller (inner) scales where it is
dissipated by nonideal microscopic mechanisms. In hydro-
dynamics this picture is well studied and widely accepted,
with energy decay assumed to be independent of viscosity,
leading to the von Kármán–Howarth decay law in which
dissipation rates are controlled by dynamics at the outer
scale. Turbulence and cascade are also invoked in numer-
ous discussions of dynamics and heating in space and
astrophysical plasmas such as the solar corona [1–4], the
solar wind [5–8], and the interstellar medium [9–11].
Current research on the solar wind often focuses on power
law inertial range cascades and microscopic dissipation
processes. However, the basic underpinnings of the plasma
turbulence picture rest on the von Kármán–Howarth decay
conjecture, which has not been directly evaluated for a
collisonless magnetized plasma. The extension of this
conjecture to plasma dynamics necessarily involves causal
detachment of the cascade rate from the dissipation
mechanisms. However, a baseline question, independent
of specific mechanisms, remains as to which microscopic
reservoir of internal energy—protons or electrons—is the
ultimate repository of energy received from the cascade.
This Letter examines these two questions in a low colli-
sionality plasma: von Kármán–Howarth energy decay, and
heating of protons and electrons. Similarity decay for this
kinetic plasma is found, in essentially the form expected
for magnetohydrodynamics, while higher amplitude turbu-
lence favors dissipation by protons. This confirms and
extends basic principles of turbulence theory to a growing
list of applications in space and astrophysical plasmas.

Similarity decay of energy in hydrodynamics was
suggested by Taylor [12], and made precise by von
Kármán and Howarth [13] who introduced the notion of

self-preservation of the functional form of the two-point
velocity correlation during the decay of isotropic turbu-
lence. Conditions for consistency require that energy (u2)
decays as du2=dt ¼ ��u3=L while a characteristic length
L evolves as dL=dt ¼ �u, for time t, constants � and �,
and similarity variables u (characteristic flow velocity) and
L (characteristic eddy size). This familiar formulation has
numerous implications for turbulence theory, including
ensuring that the dissipation rate is independent of viscos-
ity as required for derivation of the exact third order law
[14]. Extensions to energy decay in magnetohydrodynam-
ics (MHD) is often based on dimensional analysis, which
provides physically plausible, but nonunique formulations
(see, e.g., [15–17]). When based on the self-preservation
principle, MHD similarity decay involves two Elsässer
energies Z2þ and Z2� and two similarity length scales
Lþ and L� [18]. This formulation is based on two conser-
vation laws (energy and cross helicity) in incompressible
single fluid MHD, and therefore while it is more complex
than hydrodynamics, very little of the richness of kinetic
plasma behavior is captured. Its applicability for plasma
turbulence might therefore be deemed questionable. On the
other hand, there are plausible expectations that MHD is a
good description of kinetic plasma dynamics at low fre-
quencies and long wavelengths, especially in directions
perpendicular to the magnetic field, e.g., in the solar
wind [19]. We see no compelling reason to reject this
argument, but even if true, this does not imply that MHD
similarity decay is obtained in the plasma case if kinetic
effects control dissipation. Therefore we inquire here
whether energy decay in a kinetic plasma is consistent
with the MHD similarity principle, proceeding numeri-
cally, employing a electromagnetic particle-in-cell (PIC)
method.
As a step towards plasma behavior, consider the constant

density incompressible MHD equation, written in terms of
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solenoidal velocity v and magnetic field b in Alfvén speed
units, pressure p, viscosity �, and resistivity �. The model
includes, a momentum equation ð@v=@tÞ þ v � rv ¼
�rpþ ðr� bÞ � bþ �r2v and a magnetic induction
equation ð@b=@tÞ ¼ r� ðv� bÞ þ�r2b. For ideal
(�� 0, �� 0) incompressible MHD the total energy,
kinetic plus magneticE ¼ ð1=2Þhjvj2 þ jbj2i, and the cross
helicity Hc ¼ hv � bi are conserved. These are equivalent
to the Elsässer energies Z2� ¼ hjz�j2i ¼ hjv� bj2i (where
z� is the Elsässer variables) which may be viewed as the
cascaded quantities in MHD turbulence theory. Based on
the two assumptions of finite energy decay at large
Reynolds numbers [13] and preservation of the functional
form of the correlation functions, for MHD one finds four
conditions for consistency of the assumption of similarity
decay of energy [18], namely,

dZ2þ
dt

¼ ��þ
Z2þZ�
Lþ

;
dZ2�
dt

¼ ���
Z2�Zþ
L�

(1)

dLþ
dt

¼ �þZ�;
dL�
dt

¼ ��Zþ: (2)

This generalizes the von Kármán–Howarth result [13] to
fully isotropic MHD or MHD isotropic in a plane trans-
verse to a strong mean field [18].

Simulations.—To test the hypothesis that a turbulent
kinetic plasma might follow von Kármán–Howarth energy
decay in the MHD form, we carry out a set of PIC
simulations. We opt for 2.5-dimensional (D) geometry
(2D wave vectors, 3D velocity and electromagnetic fields)
in order to attain sufficient scale separation, equivalent to
large effective Reynolds numbers, typically regarded as a
condition for similarity decay [20]. Here scale separation
requires that the outer scales L� are substantially greater
than the dissipative scales, nominally associated with the
ion inertial scale di.

The fully electromagnetic PIC simulations [21]
employed here solve the kinetic equations using superpar-
ticles that respond to the Lorentz force, coupled to
Maxwell’s equations. The simulation is normalized to ref-
erence parameters: density nr ¼ 1, magnetic field Br ¼ 1,
and mass (ion mass) mi ¼ 1; as well as derived (from nr,
Br, mi) parameters, the ion inertial length di, the ion
cyclotron time ��1

i , the Alfvén speed vAr, and the

temperature scale Tr ¼ miv
2
Ar. For simplicity, in the follow-

ing, we will employ dimensionless units unless otherwise
specified.
A summary of run parameters is given in Table I. Run 2

(the reference run) is in a ð25:6diÞ2 box, with 20482 grid
points. Initially, there are 300 particles per cell with uni-
form density n0 ¼ 1. The initial temperature of the ions and
electrons is T0 ¼ 1:25 (normalized to miv

2
Ar). The Debye

length, �D ¼ 0:05, is more than 4� grid scale. The electron
mass and speed of light areme ¼ 0:04, and c ¼ 30, respec-
tively. The time step is �t ¼ 0:0025. A strong out-of-plane
guide field Bz ¼ 5 is imposed to reduce compressibility,
which gives the system an Alfvén speed vA � 5vAr, an ion
cyclotron time !�1

ci � 0:2��1
i , and a total plasma beta

� ¼ 0:2. Initial turbulence is solenoidal velocity, trans-
verse to Bz (‘‘Alfvén mode’’) with unit total fluctuation
energy, controlled cross helicity Hc, and controlled Alfvén
ratio rA ¼ Ev=EB ¼ 1:0; see Table. We initialize a Fourier

spectrum: EðkÞ � ½1þ ðk=k0Þ8=3��1, for wave numbers
k ¼ ½2; 4�2�=25:6 with k0 ¼ 6� 2�=25:6.
The selected runs differ from the reference run 2 by the

highlighted bold parameters (Table I). In run 4, the Alfvén
ratio is rA ¼ 1:0 as in run 2 but the in-plane fluctuating
magnetic and velocity are doubled. Run 5 only differs from
run 2 in system size, being ð51:2diÞ2 (40962 grid points);
therefore, the corresponding wave numbers are k ¼
½2; 4�2�=51:2 with k0 ¼ 6� 2�=51:2.
Results.—To study energy decay we examine the time

variation of the Elsässer energies Z2þðtÞ and Z2�ðtÞ. At each
time t of the analysis we compute the two-point correlation
functions for the Elsässer variables z�, that is, R�ðrÞ ¼
hz�ðxÞ � z�ðxþ rÞi for spatial average h� � �i and spatial
lag r. We find the lag values L� that solve RþðLþÞ ¼ 1=e
and R�ðL�Þ ¼ 1=e where e ¼ 2:718 28 . . . . This defines
the outer scales L�ðtÞ at each time. According to the MHD
decay hypothesis, the evolution of Z2þðtÞ and Z2�ðtÞ
depends on Z2þðtÞ, Z2�ðtÞ, Lþ, and L�, with the variations
due to all other effects relegated to implicit dependence of
the von Kármán constants �þ and ��.
Proceeding in this manner, Fig. 1, top panel, shows the

time history of the Elsässer energies Z2þðtÞ and Z2�ðtÞ for
the 12 runs listed in Table I. The emphasis in this illus-
tration is not the specific behavior of any individual run,
but rather the general trend and time scales of energy
decay, and the substantial spread in values in the different

TABLE I. Runs: Differences from run 2 are highlighted in bold. The nonlinear time tnl ¼ ½Lþð0Þ þ L�ð0Þ�=2=zð0Þ (where zð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzþð0Þ2i þ hz�ð0Þ2i

p

) is listed in the unit of the system cyclotron time !�1
ci .

Runs 1 2 3 4 5 6 7 8 9 10 11 12

Z2
0 2 2 2 8 2 8 4:5 18 8 2 2 12:5

rA 0:2 1.0 5:0 1.0 1.0 0:2 1.0 1.0 5:0 1.0 1.0 1.0

Size 25.6 25.6 25.6 25.6 51:2 25.6 25.6 25.6 25.6 25.6 102:4 25.6

Hc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0:8 0.0 0.0

tnl 19.1 14.9 11.6 7.4 29.7 9.6 9.9 5.0 5.8 12.9 59.5 6.0
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runs. To compare with the MHD similarity decay, we
examine the decay rate of the energies by numerical evalu-
ation of dZ2þðtÞ=dt and dZ2�ðtÞ=dt from each run and
combining them to obtain the empirical value of the sum
dZ2=dt. This is done for clarity of presentation, but Z2þðtÞ
and Z2�ðtÞ separately have been found to follow similarity
decay equally well. In MHD the theoretical expectation
is that the decay rate, assuming for simplicity
that �þ ¼ ��, is proportional to Dth � Z2þZ�=Lþ þ
Z2�Zþ=L�. Normalizing the empirical decay rate by the
theoretical expectation Dth permits evaluation of the simi-
larity hypothesis. The result of this normalization is shown
in the second panel of Fig. 1, where all runs reach the decay
law after one eddy turn over time (tnl in Table I). Note that
run 11, having the largest system size, requires a longer
time to attain a fully developed state, as expected since tnl
increases with energy-containing scale. The result is
encouraging with regard to the accuracy of similarity
decay as it applies to an ensemble of runs, as some case-
to-case variability is always expected in turbulence. It is
also likely that the values of ��, both expected to be Oð1Þ,
are generally unequal, a possibility we defer to a later time.
The level of variability seen here is comparable to analo-
gous variability seen in similarity decay in hydrodynamics
[14], in electron fluids [22], and in MHD runs [16].
Therefore we can conclude that the von Kármán-MHD
similarity theory provides a reasonable baseline descrip-
tion of the scaling in time of the energy decay.

This examination may be taken a step further by opti-
mizing the von Kármán constants for each run, which then
takes into account the variation of physical parameters
such as Alfvén ratio, Reynolds number, etc., that are not
represented explicitly in the similarity theory. In principle
this could be a massive effort, requiring many times the
number of runs we exhibit here. However, a simple way to
proceed is to normalize each run by the average value of its
effective decay constant �� ¼ ðdZ2=dtÞ=Dth where each
quantity is computed from the run for all times after
�cit ¼ 50. In effect this eliminates variability due to pos-
sible weak dependence of �� on other parameters. The
result of this analysis on the same 12 runs is shown in
Fig. 2. The time series now have average values of 1 by
construction, but it is also apparent that (i) the variability of
the decay rates is reduced, and (ii) the series are all visibly
stationary and without trend. We conclude that after a
transient startup phase, the ensemble of kinetic plasma
turbulence runs exhibits energy decay that is consistent
with the MHD extension of the von Kármán similarity
decay hypothesis.
In MHD the loss of energy from fluid scales is due to

viscosity and resistivity and known dissipation functions.
However for a low collisionality plasma, the dissipation
function is unknown, and dissipation may involve many
processes. This is an active area of interest in space physics
and astrophysics [23–28]. The basic question of how dis-
sipated energy is partitioned between protons and electrons
[29] is readily addressed using the set of PIC runs
employed above, for which Ti ¼ Te initially. Figure 3
shows the temperature evolution for three runs: For the
low initial energy case the Te increases more than Ti. For
the intermediate energy case the increases in Ti and Te are
almost equal. Finally, for the strongest turbulence case, the

FIG. 1 (color online). (Top) Time history of Elsässer energies
Z2þðtÞ (solid lines) and Z2�ðtÞ (dashed lines) and (bottom)
simulated decay rates dE=dt over their respective theoretical
expectation Dth � Z2þZ�=Lþ þ Z2�Zþ=L� for all 12 runs
(in 12 colors).

FIG. 2 (color online). Normalized (by the average value of
each run’s effective decay constant �� ¼ ðdZ2=dtÞ=Dth) decay
rates dE=dt over theoretical expectations Dth � Z2þZ�=Lþ þ
Z2�Zþ=L�. The standard deviation about unity of the normalized
decay rate is listed for each run.
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proton heating is greater. A summary of this result is given
in Fig. 4 which shows Qi=Qe, the ratio of time averaged
heat functions (Qi=Qe ¼ �Ti=�Te / temperature change)
for protons and electrons for all cases. It is apparent that
there is a systematic increase of proton heating relative to
electron heating as the turbulence level is increased.

Conclusions.—Adopting an empirical approach based
on PIC runs, we have demonstrated that a low collisionality
kinetic proton-electron plasma experiences decay of total
fluid scale fluctuation energy according to a von Kármán
similarity law. The specific decay law that we employed is
derived for incompressible MHD based on the assumption
that the shape of two point correlation functions remains
unchanged during decay, which implies the decay laws
given in Eqs. (1) and (2). The approximate validity of
this approach provides a strong basis for treatments of
plasma turbulence, as it does for hydrodynamics [14].
This principle assumes that energy decay at outer scales
does not depend on details of the microscopic kinetic

dissipation processes. It leaves open the question of the
proportion of dissipated energy that goes into the electrons
and protons. We employed the same set of runs to address
this question, and arrived at the potentially important con-
clusion that more energy goes into the electron heating for
low turbulence energies, and more into protons at high
initial turbulence levels. The crossover value of the turbu-
lence amplitude occurs when the initial turbulence is such
that �b=B0 	 2=5.
There has been somewhat of a puzzle regarding solar

wind and coronal heating, in that observed proton tem-
peratures are usually found to be greater than electron
temperatures, but familiar mechanisms such as Landau
damping mainly heat electrons. The present work clarifies
this situation in an agreeable way, without any contra-
diction of prior ideas. At small amplitudes the present
result is consistent with linear Vlasov theory, finding
dominant heating of electrons. Increased proton heating
for stronger turbulence strongly suggests an involvement
of coherent structures in kinetic processes, also reported
in various recent plasma simulation studies [30–34].
A simple understanding is provided by appealing to the

structure of the Kolmogorov refined similarity hypothesis,
from which we expect that

j�rzj3 � �rr; (3)

where �r is the total dissipation in a sphere of radius r at
position x , and �rz ¼ er � ½zðxþ rÞ � zðxÞ� is the longi-
tudinal increment of an Elsässer field at spatial lag r (where
er is the unit vector in r direction). Stronger turbulence will
have larger �r and therefore larger increments �rz. This
corresponds to stronger gradients, in particular at coherent
structures such as current sheets. However, it is established
[35] that protons interact strongly with current sheets hav-
ing a typical scale of the ion inertial length. Stronger current
sheets at this scale will open up more channels for kinetic
couplings and instabilities. Having more such channels, the
protons will be heated more. At lower turbulence levels,
there are less couplings at ion scales, and the energy cas-
cade more readily passes through the proton scales without
producing dissipation. In that case more of the energy
arrives at electron scales where damping will occur. The
same basic physical argument has been previously stated
[36] in regards to the variation of the Taylor microscale, and
the dependence of sub-ion-inertial scale spectral slope on
cascade rate [37]. The idea that additional ion dissipation
channels open up at a larger turbulence level or cascade rate
is, as far as we know, the only explanation that has been
offered for these observed phenomena. Here, the same
rationale provides a preliminary explanation for the result
that stronger cascades preferentially heat protons. Further
work is needed to support and explain this hypothesis, and
if it is correct, it may lead to further studies in turbulence
theory, plasma processes, simulations, and observations.
Some results will be forthcoming from these efforts, while
we also await attempts to extend these findings.

FIG. 3 (color online). Time evolution of ion (solid lines) and
electron (dashed lines) temperature (Ti, Te) increments over the
initial value T0 for runs 2 (black, low initial Elsässer energy
Z2
0 ¼ 2), 4 (blue, medium initial Elsässer energy Z2

0 ¼ 8), and 8

(red, high initial Elsässer energy Z2
0 ¼ 18).

FIG. 4 (color online). Time averaged heat functions Qi=Qe ¼
�Ti=�Te, where �T is the temperature change from t ¼ 0 to
t ¼ 200!�1

ci , for protons and electrons for all 12 runs.
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