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Generalizations of the microcanonical and canonical ensembles for paths of Markov processes have

been proposed recently to describe the statistical properties of nonequilibrium systems driven in steady

states. Here, we propose a theory of these ensembles that unifies and generalizes earlier results and show

how it is fundamentally related to the large deviation properties of nonequilibrium systems. Using this

theory, we provide conditions for the equivalence of nonequilibrium ensembles, generalizing those found

for equilibrium systems, construct driven physical processes that generate these ensembles, and rederive

in a simple way known and new product rules for their transition rates. A nonequilibrium diffusion model

is used to illustrate these results.
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Equilibrium properties of many-particle systems are
determined by having recourse to statistical ensembles,
such as the microcanonical ensemble for systems with
constant energy or the canonical ensemble for systems at
constant temperature [1]. For nonequilibrium systems
modeled with Markov processes, similar ensembles can be
constructed by defining probability distributions on the
trajectories or paths of these systems, which are either
conditioned on some constraints, as in the microcanonical
ensemble, or have the form of a Gibbs distribution, as in the
canonical ensemble. Such nonequilibrium path ensembles
have been considered, in particular, by Evans [2–4] in the
context of sheared fluids, and have come to play an impor-
tant role in recent studies of the glass transition, e.g., in
Lennard-Jones liquids [5–7], and dynamical phase transi-
tions in kinetically constrained models [8–11] and quantum
systems [12–15].

It is known from [2–4] that microcanonical path ensem-
bles can be generated in the long-time limit by a Markov
process whose transition rates are those of the original
process, modified by a factor taking into account the micro-
canonical constraint. This result, extended to canonical path
ensembles by Jack and Sollich [16], is important physically
as it shows that path ensembles can be generated by an
effective or driven process. However, as of now, it is not
clear for which systems this result holds and how a micro-
canonical driven process is related to a canonical one. These
problems relate to the issue of ensemble equivalence, which
is fundamental in equilibrium statistical mechanics [17].

Here, we present a systematic approach to path ensem-
bles that addresses these problems and show how they are
fundamentally related, via the theory of large deviations
[18], to dynamical fluctuations of nonequilibrium systems.
Our theory contains many results obtained before, but
also simplifies and generalizes them in many ways.
In particular, we are able to treat an important class of
nonequilibrium systems not covered in previous studies,

namely, diffusions, and to provide a direct proof of known
constraint rules satisfied by driven processes [19–21] in
addition to deriving new ones. From the connection with
large deviations, we also state explicit conditions for the
equivalence of microcanonical and canonical path ensem-
bles, similar to those of equilibrium systems, indicating
that these ensembles are not always equivalent. To high-
light the case of diffusions, we illustrate our results for a
driven periodic Langevin equation, used, for example, to
model manipulated colloidal particles [22].
We consider, as a general model of physical systems

driven in nonequilibrium steady states, an ergodic Markov
process Xt evolving over a time t 2 ½0; T�. The specific
form of this process depends on the system considered.
It can be a jump process if one considers discrete-state
processes, such as noisy chemical and biological reactions
[22] or interacting particles evolving on a lattice [23].
Alternatively, it can be a diffusion, or a set of coupled
stochastic differential equations in general, if one considers
systems such as colloidal particles immersed in liquids
[22], stochastic thermostated systems [24], or coupled
noisy oscillators. In both cases, the effect of external
reservoirs and fields can be modeled in terms of boundary
conditions or directly at the level of transition rates, drift,
and diffusion coefficients.
The statistical properties of Xt are determined by its

Markov generator L, which governs the evolution of func-
tions of Xt or by its adjoint L

y, which governs the evolution
of the probability density function (PDF) pðx; tÞ. Formally,
we can also characterize Xt, following the path integral
approach to Markov processes, by the functional PDF P½x�
of the paths fxðtÞgTt¼0, which enters in the calculation of

expectations of the form

hATi ¼
Z

D½x�P½x�AT½x�; (1)
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whereD½x� denotes the path integral element and AT½x� is
a general observable of Xt. Physical examples of observ-
ables include particle and energy currents, shear induced
by external forces, or the work performed to drive a process
in a nonequilibrium steady state.

In general, one is interested in studying not just the
average value of an observable AT , but also its typical
(i.e., most probable) value and fluctuations determined by
its PDF PðAT ¼ aÞ. Following the case of equilibrium
systems, it is also of interest to study the properties of a
process Xt when some observable acting as a constraint is
varied. For example, one can study how a fluid initially at
equilibrium goes to a nonequilibrium state under shearing
[2–4] or how the properties of a glassy system vary as a
function of its dynamical activity [5–7]. As another
example recently considered in [25–27], one can study
how the stationary distribution of a nonequilibrium inter-
acting particle system changes as its current JT integrated
over a time T is observed to be far from its typical value.

In terms of probabilities, these situations are described
by conditioning the path PDF P½x� of Xt on the constraint
or fluctuation AT ¼ a observed

Pa½x� ¼ P½xjAT ¼ a� ¼ P½x; AT ¼ a�
PðAT ¼ aÞ : (2)

This defines, similarly to equilibrium, a microcanonical
path ensemble, also referred to as a conditional or con-
strained ensemble [2–4]. Alternatively, we can follow
Gibbs and define a canonical path ensemble by

Pk½x� ¼ eTkAT ½x�P½x�
WTðkÞ ; WTðkÞ ¼ heTkAT i; (3)

which replaces the constraint AT ¼ a by an exponential
involving the parameter k conjugated to AT [28]. In other
works, Pk is also referred to as the biased, tilted, or s
ensemble [16,29,30]. The analogy with equilibrium ensem-
bles is obvious if one views paths as microstates and AT as
the energy. From this, we see that the normalization
constant WTðkÞ is the analog of the partition function.

Unlike its equilibrium counterpart, the canonical path
ensemble does not always have a physical interpretation in
terms of heat baths or driving fields. However, from a
theoretical point of view, it is interesting to ask, as Gibbs
did, whether Pk is equivalent to Pa, i.e., whether the
properties of a system (equilibrium or stationary) in the
canonical ensemble reproduce those of the microcanonical
ensemble. This equivalence is known to hold for many
equilibrium systems [17] and justifies using the canonical
ensemble for actual calculations because of its simpler,
unconstrained form. The same problem applies here: if
we can demonstrate that Pk and Pa are equivalent, then
any calculations of typical quantities involving Pa can be
done with Pk. Proving equivalence also provides a way to
physically obtain the canonical ensemble from the micro-
canonical ensemble by Gibbs conditioning.

Below, we show that equivalence holds in the stationary
limit where T ! 1, under some conditions related to the
fluctuations of AT . Moreover, we show that there exists a
Markov process with generator Lk, different from L, whose
path PDF is equivalent to Pa and Pk in the same limit.
Physically, this means that the microcanonical and canoni-
cal path ensembles are generated by a specific process,
called as before the driven process, involving additional
forces compared to those driving Xt.
This is essentially the result of Evans mentioned earlier,

with the difference that we now treat the problem of
equivalence explicitly. Moreover, we obtain this result for
general Markov processes, as well as a general class of
observables that are (i) integrated in time, and (ii) depend
on the state of the process and its transitions over time. For
jump processes, these observables take the form

AT ¼ 1

T

Z T

0
fðXtÞdtþ 1

T

X
0�t�T:�Xt�0

gðXt� ; XtþÞ; (4)

where f and g are arbitrary functions and the sum is over
all jumps �Xt ¼ Xtþ � Xt� � 0 of the process. For diffu-
sion processes, observables satisfying (i) and (ii) above are
of the form

AT ¼ 1

T

Z T

0
fðXtÞdtþ 1

T

Z T

0
gðXtÞ � dXt; (5)

where � denotes the Stratonovich integral [31]. These
observables are very general: they include as special cases
all the quantities mentioned so far (currents, shear, activity)
in addition to quantities such as the integrated work, heat,
and entropy production considered in the context of
stochastic thermodynamics [32].
The fundamental assumption underlying our results is

that the observable AT satisfies a large deviation principle
[18]. This means that the stationary PDF of AT scales in the
limit T ! 1 as

PðAT ¼ aÞ ¼ e�TIðaÞþoðTÞ; (6)

where IðaÞ is a function, called the rate function, that does
not depend on T. This function plays a central role in
equilibrium and nonequilibrium statistical physics [18],
as it characterizes the typical values and fluctuations of
AT . In large deviation theory, it is obtained from the
dominant eigenvalue �k of the so-called tilted operator
Lk, whose form depends on the observable considered.
For observables having the jump form of (4), we have [33]

Lk ¼ Lekg þ kf; (7)

whereas for diffusion observables defined in (5), we have

Lk ¼ F̂ðr þ kgÞ þ ðr þ kgÞD
2
ðr þ kgÞ þ kf; (8)

where F̂ is the corrected drift entering in the symmetrized
form of the generator of the stochastic differential equation
considered and D is its diffusion matrix [34].
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Assuming a large deviation principle for AT , we can
already solve the equivalence problem by appealing to
general results of [17] stated for equilibrium ensembles,
but which equally apply to nonequilibrium ensembles.
The definition of equivalence used here is the following:
we say that two path PDFs P and Q are asymptotically
equivalent if

lim
T!1

1

T
ln
P½x�
Q½x� ¼ 0 (9)

almost everywhere with respect to P. Essentially, this
means that P and Q are equivalent if they are equal up to
subexponential terms in T and for almost all paths.

This notion of equivalence is slightly stronger than the
one used in [17], but also implies that the typical values of
any observable obtained under P as T ! 1 are the same as
those obtained under Q in this limit. Moreover, the equiva-
lence of Pa and Pk in the sense of (9) turns out to be
determined, as in [17], by the convexity of the rate function
IðaÞ as follows: (i) If IðaÞ is convex at the point a, then there
exists a k such that Pk is asymptotically equivalent to Pa,
which means, physically, that the two ensembles describe
the same long-time stochastic dynamics. Moreover, if IðaÞ
is differentiable, then equivalence holds for k ¼ I0ðaÞ,
providing a generalization of the temperature-entropy rela-
tion. (ii) If IðaÞ is nonconvex at a, then there is no k for
which Pk is asymptotically equivalent with Pa. In this case,
the microcanonical process obtained by conditioning on
AT ¼ a has no canonical counterpart for any k.

The proof of these results, as well as the discussion of a
third, more technical case of equivalence, known as partial
equivalence, are deferred to a longer paper [35]. What is
important to note here is that the equivalence of path
ensembles is not guaranteed—it depends on the convexity
of the rate function IðaÞ, in a way similar to equilibrium
ensembles, whose equivalence depends on the concavity of
the thermodynamic entropy [17]. In most works on path
ensembles, this equivalence is assumed.

With this result, we now turn to the problem of generat-
ing or representing the microcanonical and canonical path
ensembles by a Markov process. A priori, it is not clear that
such a Markov representation exists, since neither Pa nor
Pk is Markovian: the former has a conditioning that
depends on the future time T, while the latter involves
the constant WTðkÞ which breaks the multiplicative struc-
ture of the path PDF. However, as mentioned before, it is
possible to construct a Markov process with generator Lk,
whose path PDF is asymptotically equivalent to Pk, in the
same sense as above, and which, in the case of ensemble
equivalence, must therefore also be equivalent to Pa.

To construct this Markov process, we consider the
following similarity transform of L

Lh ¼ h�1Lh� h�1ðLhÞ; (10)

which is a generalization of Doob’s h transform [36–38]
defined for positive functions h [39]. For the purpose of

defining Lk, the main property of Lh that we need to know
is that it is a Markov generator, and so defines a Markov
process which has an explicit probability ratio with respect
to the original path PDF P½x�. Combining the expression of
this ratio, found in [38], with Lk, it is then possible to
construct the equivalent Markov process with generator Lk

and path PDF Q½x� in such a way that the limit of (9) with
P=Q replaced by Q=Pk vanishes. The full derivation is
deferred again to [34].
The final result is that Lk is unique and is obtained by

applying the h transform toLk with h ¼ rk, where rk is the
(right) eigenvector of Lk associated with the dominant
eigenvalue �k, so that

Lk ¼ Lrk
k : (11)

Noticing that the similarity does not act on the diagonal
part of Lk involving f, we can also write

Lk ¼ r�1
k Lkjf¼0rk þ kf��k: (12)

This explicit expression for the generator of the Markov
process asymptotically equivalent to the canonical path
ensemble is the main result of this Letter. It applies to
any Markov processes, including jump processes and dif-
fusions, as well as any observables of these processes,
provided that they satisfy a large deviation principle.
Before discussing a specific application, it is instructive

to show that (12) recovers previous results obtained for
physical jump processes characterized by jump rates
Wðx; yÞ from state x to y. In this case, we obtain from
(12) and (7) that the rates Wkðx; yÞ of the driven process
associated with the canonical path ensemble have the form

Wkðx; yÞ ¼ r�1
k ðxÞWðx; yÞekgðx;yÞrkðyÞ; (13)

which is the result obtained by Jack and Sollich [16] and
essentially also Evans [2–4]. From this, we immediately
obtain

Wkðx; yÞWkðy; xÞ ¼ Wðx; yÞWðy; xÞek½gðx;yÞþgðy;xÞ�; (14)

which reduces to

Wkðx; yÞWkðy; xÞ ¼ Wðx; yÞWðy; xÞ (15)

if g is an antisymmetric function. This identity relating the
driven rates to the original rates of Xt is one of the product
constraint rules recently derived in [19–21] by more
involved methods. Another constraint found by these
authors relates the escape rate �ðxÞ ¼ ðW1ÞðxÞ of Xt to
the escape rate �kðxÞ ¼ ðWk1ÞðxÞ of the driven process

�ðxÞ � �ðyÞ ¼ �kðxÞ � �kðyÞ: (16)

In our formalism, this exit rate constraint is simply
obtained from (12) for f ¼ 0 and any function g. In the
case where f � 0, we obtain the more general identity,

�kðxÞ � �ðxÞ þ kfðxÞ ¼ �k: (17)
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To see how these results can be applied beyond jump
processes, consider now a general d-dimensional diffusion
having the (Itô) form

dXt ¼ FðXtÞdtþ �ðXtÞdWt; (18)

where F is a d-dimensional force field, � is a d� d noise
matrix, and dWt is a d-dimensional Wiener noise [31].
Assuming that this process is ergodic, we can derive
from its generator and (12) that the driven process gener-
ating the canonical path ensemble of Xt is a diffusion with
the same noise as above but with the modified force

Fk ¼ FþDðkgþr lnrkÞ; (19)

where D ¼ ��T is the diffusion matrix. If the canonical
path ensemble is equivalent to the microcanonical path
ensemble, then the driven diffusion with the force Fk

also generates the process Xt conditioned on the fluctuation
AT ¼ a. As a consequence of this result, we see that the
driven process associated with an equilibrium system [40]
is itself an equilibrium system if g is gradient and is
otherwise modified to a nonequilibrium system not satisfy-
ing detailed balance. If g is gradient, we also obtain
from (19) the identity

r� ðD�1FkÞ ¼ r� ðD�1FÞ (20)

for two- and three-dimensional systems [41], which can be
seen as a diffusive version of the jump process constraint
rules.

To illustrate these results, let us consider the forced
periodic diffusion evolving according to

_�ðtÞ ¼ �� V 0½�ðtÞ� þ �ðtÞ; � 2 ½0; 2�Þ; (21)

where V ¼ V0 cosð�Þ, � is a constant frequency driving the
system in a nonequilibrium steady state breaking detailed
balance, and �ðtÞ is a Gaussian white noise. This model
arises in many physical applications, e.g., ion conduction,
noisy Josephson junctions [42], in addition to Brownian
motors and colloidal particles [22], and serves as an impor-
tant model for testing new ideas and results about nonequi-
librium systems; see, e.g., [43–45].

An important observable of this system is the velocity
averaged over a time T

AT ¼ 1

T

Z T

0
d�ðtÞ ¼ �ðTÞ � �ð0Þ

T
; (22)

which is proportional to the mean current. This is an
observable having the form (5) with f ¼ 0 and g ¼ 1,
for which the tilted generator is, according to (8),

Lk ¼ ð�� V 0 þ kÞ d

d�
þ 1

2

d2

d�2
þ k2

2
þ kð�� V 0Þ: (23)

The dominant eigenfunction rkð�Þ of this non-Hermitian
operator is easily found by expanding the eigenvalue
equation in Fourier modes. The effective force Fkð�Þ of
the driven process obtained from rkð�Þ is shown in Fig. 1

for V0 ¼ 1 and � ¼ 0:5, in which case the stationary
(long-time) value of the current AT is a� � 0:176.
We see from the plot that the effective force of the driven

process generating the canonical path ensemble is always
periodic but changes in a nontrivial way with k. For k > 0,
Fk drives the system to a positive stationary value of the
current greater than a�, while for k < 0, Fk drives the
system to positive currents for k down to some value k ¼
0:5, below which the current becomes negative in the
stationary limit. Thus, by choosing k properly, we can force
the system to assume any stationary, nonequilibrium cur-
rent. In the limit k ! �1, the constant k2 term in the tilted
generator dominates and leads to Fk � k, which means,
physically, that the effective dynamics behind large cur-
rents in the canonical ensemble is a simple potential-free
diffusion with a constant drive in the direction of the
current. Since the rate function of AT is known to be convex
for this model, this also means that the periodic diffusion
(21) is equivalent to a driven diffusion with constant
frequency when it is conditioned microcanonically on
large currents.
To conclude, we have presented a general theory of

microcanonical and canonical path ensembles describing
the typical states and fluctuations of Markovian systems
driven in nonequilibrium steady states. This theory enables
one to determine, similarly to equilibrium systems, when
these two ensembles are equivalent (that is, when they
describe the same stationary states) and shows how the
nonequilibrium dynamics associated with each ensemble is
generated physically by an effective Markov process rep-
resenting a driven nonequilibrium system. It also shows in
a clear and rigorous way that the properties of this driven
process are intimately related to the large deviation prop-
erties of nonequilibrium systems. In the future, we will
provide proofs of the results presented here, in addition to
investigating new problems arising from these results—in

0 1 2 3 4 5 6
3

2

1
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1

2

3

F
k

(
)

k = 3

k = 0

k = 3

a > 0

a < 0

FIG. 1 (color online). Force Fkð�Þ of the driven Markov pro-
cess associated with the canonical version of the periodic diffu-
sion with V0 ¼ 1 and � ¼ 0:5. The different curves are obtained
for k 2 ½�3; 3� in steps of 0.25. The force of the base process
corresponding to k ¼ 0 is shown in black. Blue curves yield
positive stationary currents, AT ¼ a > 0, while purple curves
yield negative stationary currents.
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particular, the significance of the gaugelike rotational con-
straint (20), the derivation of driven processes for systems
having nonconvex rate functions, for which equivalence
of ensembles does not hold, and the use of driven processes
in large deviation simulations, an important tool in studies
of nonequilibrium systems.
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