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Chern insulators are band insulators which exhibit a gap in the bulk and gapless excitations in the edge.

Detection of Chern insulators is a serious challenge in cold atoms since the Hall transport measurements

are technically unrealistic for neutral atoms. By establishing a natural correspondence between the time-

reversal invariant topological insulator and the quantum anomalous Hall system, we show for a class of

Chern insulators that the topology can be determined by only measuring Bloch eigenstates at highly

symmetric points of the Brillouin zone. Furthermore, we introduce two experimental schemes, including

the spin-resolved Bloch oscillation, to carry out the measurement. These schemes are highly feasible

under realistic experimental conditions. Our results may provide a powerful tool to detect topological

phases in cold atoms.
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The recent great advancement in realizing synthetic
spin-orbit (SO) coupling [1–6] turns cold atom systems
into new and promising platforms to probe exotic topo-
logical phases beyond natural conditions [7–9]. So far,
the experimentally realized SO interaction [2–6] is a
one-dimensional (1D) SO term with equal Rashba and
Dresselhaus amplitudes through a two-photon Raman pro-
cess as proposed by an earlier theoretical work [1]. The
study of higher dimensional topological phases necessi-
tates the realization of higher dimensional SO interactions
in the cold atoms [10–16]. While a 2D or 3D synthetic SO
term is yet to be realized in experiment, theoretical
schemes have been proposed [17–19]. In particular, it
was proposed in a very recent work that the 2D SO inter-
action can be realized with realistic cold atom platforms
[20]. In the single particle regime, this model describes a
quantum anomalous Hall (QAH) insulator (Chern insula-
tor) [21] which exhibits a gap in the bulk and chiral edge
modes in the boundary [22–25].

Because of the absence of local orders, topological
phases are typically hard to detect. For cold atoms, the
task may be even more demanding since quantized (Hall)
transport measurements [26], widely exploited in the solid
state systems, are technically unrealistic for neutral atoms.
On the other hand, while the detection of gapless edge
modes by, e.g., the light Bragg scattering proposed in
Ref. [23], is in principle straightforward, its usefulness
may be limited by the difficulty in separating edge state
signals from the bulk background and complicated by
realistic boundary conditions [27–29]. Alternative strat-
egies for the detection include to measure the state-
dependent atom density response to an external field
[30], the bulk Chern number from Berry curvature over
the Brillouin zone (BZ) [31,32], Zak’s phase [33], and
charge pumping [34]. While these methods provide direct

detection of the bulk topological invariants, they rely on
complicated manipulations or measurements on the whole
bulk band, which may still be challenging for the delicate
cold atom systems.
In this Letter, we propose to detect Chern insulators by

measuring the bulk states at only a few highly symmetric
points of the BZ. By establishing a natural correspondence
between the time-reversal (TR) invariant topological insu-
lator and the QAH system, we show for a class of Chern
insulators that the topology can be determined by measur-
ing the Bloch eigenstates at only highly symmetric points
of the BZ. This greatly simplifies measurement in the
realistic experiments. We further introduce experimental
schemes, including the spin-resolved Bloch oscillation in
2D optical lattices, to carry out the measurement of the
topological states.
We consider the square optical lattice model for

spin-1=2 cold atoms proposed in a recent work, which
has essential advantages in its experimental realization
[20]. The main results of this Letter, as shown below and
detailed in the Supplemental Material [35], can be applied
to more general Chern insulators and lattice configurations,
including honeycomb lattices. The Hamiltonian of the

system H ¼ P
k;��0 ĉyk;�H �;�0 ðkÞĉk;�0 , with

H ðkÞ ¼ dxðkÞ�x þ dyðkÞ�y þ dzðkÞ�z; (1)

where dz ¼ mz � 2t0 cosðkxaÞ � 2t0 cosðkyaÞ and dx;y ¼
�2tSO sinðky;xaÞ, with mz a controllable Zeeman splitting

induced by a small two-photon off resonance in the Raman

couplings and t0 and t
ð0Þ
SO representing the nearest-neighbor

spin-conserved and spin-flipped hopping coefficients,
respectively [20]. In the cold atom context, spin refers to
two hyperfine levels. The topology of the system is char-
acterized by the first Chern number expressed by the
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integral of the Berry curvature over the first BZ: C1 ¼
ð1=2�ÞR dkxdkyB�;zðkÞ, where B�ðkÞ ¼ rk �A�ðkÞ
and A�ðkÞ ¼ i@hu�;kjrkju�;ki, with ju�;ki labeling the

upper and lower Bloch eigenstates solved from the
Hamiltonian (1). Direct calculation shows that C1 ¼
sgnðmzÞ when 0< jmzj< 4t0, and otherwise C1 ¼ 0.

A Chern insulator explicitly breaks TR symmetry.
Nevertheless, the above HamiltonianH is symmetric under

the 2D inversion transformation defined by P ¼ P̂ � R̂2D,

where P̂ ¼ �z acting on spin space and the 2D spatial

operator R̂2D transforms the Bravais lattice vector
R ! �R. For the Bloch Hamiltonian, we have

P̂H ðkÞP̂�1 ¼ H ð�kÞ, which follows that at the four

highly symmetric points ½P̂;H ð�iÞ� ¼ 0, with f�ig ¼
fð0; 0Þ; ð0; �Þ; ð�; 0Þ; ð�;�Þg. Therefore, the Bloch states

ju�ð�iÞi are also eigenstates of the parity operator P̂,

with eigenvalues �ð�Þ
i ¼ þ1 or �1. Similarly to topologi-

cal insulators [36,37], we define the following invariant

ð�1Þ� ¼ Y
i

�ð�Þð�iÞ (2)

and can verify for Hamiltonian (1) that � ¼ 0 when the
system is in the trivial regime and � ¼ 1 for the topological
regime. Furthermore, for the present square lattice, which
has four Dirac points coinciding with the four highly
symmetric points, the Chern number is given by

C1 ¼ ��

2

X
i

�ð�Þð�iÞ: (3)

It is straightforward to check that when the Zeeman term
varies from mz * 0 to mz & 0, two parity eigenvalues

�ð�Þ
�2;�3

change sign and then C1 changes from 1 to �1.

For a more general Hamiltonian with inversion symme-
try, we demonstrate below and show in more detail in the
Supplemental Material [35] that when � given by Eq. (2) is
1, the Chern number is odd and the system is nontrivial,
while for � ¼ 0, the numberC1 is even and the system may
or may not be nontrivial. The essential idea is to adopt the
topological classification of a TR variant topological insu-
lator which can be artificially constructed from the studied
Chern insulator and its time-reversed artificial copy.
Following the Fu-Kane theorem (see the Supplemental
Material for more details [35]), the topological invariant
of a 2D TR invariant topological insulator with inversion
symmetry can be determined by the product of the four
parity eigenvalues, as given in Eq. (2) [36,37]. Note that the
TR invariant topological insulator is constructed by two
independent time-reversed copies of Chern insulators.
Generically, the trivial (� ¼ 0) and topological (� ¼ 1)
phases of the TR invariant topological insulator, respec-
tively, correspond to the even and odd Chern numbers
for the two copies of QAH insulators. Therefore, the
invariant given by Eq. (2) exactly describes the topology
of a Chern insulator when jC1j is either 0 or 1, which is

true for most of the available theoretical models in cold
atoms [22–25,27–33].
The formula (2) is the central result of this work to be

applied to the detection of Chern insulators which preserve
parity symmetry and satisfy jC1j ¼ f0; 1g. Note that for a
cold atom system, the possible values of C1 can be exactly
known by theory. Since only the four parity eigenstates at
k ¼ �i need to be measured, the procedure of detecting a
Chern insulator can be essentially simplified. In the rest of
this Letter, we study two different approaches based on
Bloch oscillation [38,39] to detect the Chern insulating
phases given by the Hamiltonian (1). Note that Eq. (2)
can apply to other lattice configurations such as honey-
comb lattices, with new results predicted [35]. Also, these
results are valid for both fermions and bosons trapped in
the 2D optical lattice.
First, we consider to measure the topological invariants

from the Berry curvature Bþ ¼ �B� at the four symmet-
ric points. A straightforward calculation yields that

B� ¼
�
2mzt

2
SO

d3ðkÞ coskx cosky � 4tst
2
SO

d3ðkÞ ðcoskx þ coskyÞ
�
êz;

(4)

with dðkÞ ¼ ½Pjd
2
j ðkÞ�1=2. It can be verified that

sgn½B�;zð0;�Þ�¼ sgn½B�;zð�;0Þ�¼ sgn½�ð�Þ
0;��¼ sgn½�ð�Þ

�;0�
and sgn½B�;zð0;0Þ�¼�sgn½B�;zð�;�Þ�¼�sgn½�ð�Þ

0;0 �¼
sgn½�ð�Þ

�;��, which follows that
Q

isgn½B�;zð�iÞ� ¼Q
i�

ð�Þð�iÞ. Therefore, measuring �ð�Þð�iÞ reduces to
measuring sgnðB�;zÞ at the four momenta k ¼ �i, which

can be carried out by Bloch oscillation. We emphasize that
the present approach is essentially different from that in
Ref. [32], which suggests to detect the bulk Chern number
by measuring quantitatively B� over the BZ. Here, only
the signs of B�;z at four points need to be measured. Note

that we always have B�
0;� ¼ B�

�;0. The measurement can

be further simplified to determine B� at �1 ¼ ð0; 0Þ and
�4 ¼ ð�;�Þ. In the presence of an external force F ¼
Fx ~ex þ Fy ~ey in the x-y plane, which can be set by ramping

the optical trapping or chirping the lattice frequency [39],
the Bloch wave packet oscillates along the direction of the
force, while it deflects to the transverse direction due
to the Berry curvature. The deflection direction provides
a straightforward measurement of the sign of the Berry
curvature.
The semiclassical dynamics of a wave packet at band n

(¼ �) with center-of-mass position rc and momentum kc

is given by @ _kc ¼ FðrcÞ and _rc ¼ v0n � F�BnðkcÞ,
where v0n ¼ @

�1@kEnðkÞ and EnðkÞ is the dispersion rela-
tion. The second term in the equation of _rc represents the
anomalous velocity, leading to the transverse shift. Note
that the transverse shift in a unit Bloch time

�rc ¼ �
Z 2�

0
dkc �BnðkcÞ
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is independent of the force strength but sensitive to the
magnitude of Berry curvature. To make the results easily
distinguishable in realistic experiments, an appreciable
transverse shift is preferred, which can be achieved by
tuningmz close to the phase transition points. In particular,
to measure B0;0 and B�;�, we can tune mz close to 4t0 and
�4t0, in which cases the transverse shift is dominated by
the Berry curvature around �1 and �4, respectively. The
signs ofB0;0 andB�;� are directly read out from directions

of the transverse shift.
In the realistic experiment, one shall consider a cloud of

cold atoms which are initially trapped by a harmonic
optical potential and centered at r0 ¼ 0. The square lattice
potentials are adiabatically switched on, along with the
switch-off of the harmonic trap, and the atoms populate
the states at the band bottom (for bosons) or starting from
the band bottom (for fermions) [39]. Applying the static
force F in the 2D plane accelerates the atomic cloud, with
the dynamics described by the distribution function
��ðr;k; T; �Þ, where T is the temperature. The initial
profile of the atomic cloud, determined by ��ðr;k; T; 0Þ,
can be adjusted by the optical trapping potentials before
switching on the square lattice. For the case of a weak force
satisfying that �E2

g � 2atSOjFj with Eg the band gap,

we can neglect the Landau-Zener (LZ) transition between
the lower to upper subbands [40]. The evolution of
��ðr;k; T; �Þ, governed by the semiclassical Boltzmann
equation, satisfies the ballistic law and reads

��ðr;k; T; �Þ ¼ ��
�
r�

Z �

0
v0�dt0 þ

Z �

0
F

�B�ðkÞdt0;k�
Z �

0
dt0F=@; T; 0

�
: (5)

With this solution, the dynamics of the atomic cloud can be
studied numerically, as presented below.

The Berry curvatures B0;0 and B�;� are determined

from the numerical simulation in Fig. 1, where we plot
the atomic density at zero temperature n�ðr; �Þ ¼R
d2k��ðr;k; 0; �Þ with its maximum magnitude rescaled

to be unit. Note that the band bottom of the lower subband
is located at kbot ¼ ð�;�Þ for mz > 0 and at kbot ¼ ð0; 0Þ
if mz < 0. By applying F in the êx0 ¼ ðêx þ êyÞ=

ffiffiffi
2

p
direc-

tion, the atomic cloud oscillates in the position space along

this direction while it deflects to the transverse �êy0 ¼
�ðêy � êxÞ=

ffiffiffi
2

p
direction due to the Berry curvature. By

tuning the Zeeman parameter mz from less than to greater
than 4t0, we can see that the transverse motion changes
from the �êy0 to the þêy0 direction [Figs. 1(a) and 1(b)],

which implies that B0;0 changes direction from the �z to
the þz direction. On the other hand, by tuning mz from
mz >�4t0 to mz <�4t0, the transverse motion changes
from the þêy0 to the �êy0 direction, again implying that

B�;� changes from the þz to the �z direction [Figs. 1(c)

and 1(d)]. With these results, one gets that � ¼ 1 for

0< jmzj< 4t0 and � ¼ 0 for jmzj � 4t0, and the topologi-
cal phase is obtained in the former regime. Similar phe-
nomena can be obtained for Berry curvaturesB�2

andB�3

by tuningmz close to zero (not shown here). In this way, we
further find that C1 ¼ sgnðmzÞ in the topological phase.
Now, we introduce another approach for the measure-

ment: the spin-resolved Bloch oscillation. We shall
determine the topology of the bulk by measuring the spin
polarization of the atomic cloud at the highly symmetric
points. Note for the present square lattice the parity

operator P̂ ¼ �z, so the parity eigenstates are simply
the spin eigenstates, with the spin-up and spin-down
corresponding to different hyperfine levels. It then

follows that
Q

i�
ð�Þð�iÞ ¼

Q
isgn½pspinð�iÞ�, where the

FIG. 1 (color online). Measuring sgnðB�;zÞ at (a),
(b) �1 ¼ ð0; 0Þ and at (c),(d) �4 ¼ ð�;�Þ by Bloch oscillation,
which determines the topology of the bulk band. The static force,
applied along the êx0 ¼ ðêx þ êyÞ=

ffiffiffi
2

p
direction, induces trans-

verse deflection of the atomic cloud to �êy0 ¼ �ðêy � êxÞ=
ffiffiffi
2

p
.

Other parameters are taken as tSO ¼ t0 ¼ 2�� 0:52 kHz [20]
and jFj ¼ 0:13t0=a.

FIG. 2 (color online). Spin-resolved Bloch oscillation with the
force along the êx0 direction. (a) Topological regime with mz ¼
3:5t0. The spin polarization sgn½pspinð0Þ� ¼ �sgn½pspinðTB=2Þ�.
(b) Trivial regime with mz ¼ 4:5t0. The spin polarization
sgn½pspinð0Þ� ¼ sgn½pspinðTB=2Þ�.
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spin-polarization density pspin ¼ ðn" � n#Þ=n� with n"=#
the spin-up or -down component of the atomic density
and n� ¼ n" þ n#. The spin polarization can be measured

directly in experiment by imagining the densities of atoms
in two different hyperfine levels. Similarly, since the polar-
izations for the states at k ¼ �2 and k ¼ �3 are the same,
the bulk topology is determined by sgnðpspinÞ at k ¼ �1

and k ¼ �4.
In Fig. 2, we numerically plot the spin-polarization

density pspinð�Þ in the Bloch oscillation with F along the

êx0 direction. For the case 0<mz < 4t0, the spin polariza-
tion of the atomic cloud, starting with the center momen-
tum k ¼ ð0; 0Þ, changes from pspin ’ �1 at � ¼ 0 to

pspin ’ 1 at half Bloch time � ¼ TB=2, and then reverses

back to pspin ’ �1 again when a unit Bloch period is

finished at � ¼ TB [Fig. 2(a)]. The sign change of the
spin polarization in a unit Bloch oscillation tells us that
� ¼ 1, and the mass terms exhibit opposite signs for the
Dirac equations around �1 ¼ ð0; 0Þ and �4 ¼ ð�;�Þ, so
the system is in the topological phase. Figure 2(b) shows
that in the casemz � 4ts, the spin polarization pspin < 0 for

the whole Bloch oscillation, and therefore the phase is
trivial. The results for mz < 0 are similar. With these
phenomena, one can again determine that the topological
phase is obtained when 0< jmzj< 4t0, with the Chern
number C1 ¼ sgnðmzÞ. It is noteworthy that the spin-
resolved Bloch oscillation does not require a large trans-
verse shift in the Bloch oscillation and thus can be more
straightforward for experimental studies.

So far, we have considered the weak static force regime.
In the opposite parameter regime with �E2

g < 2atSOjFj,
the LZ transition between the lower and higher subbands
must be taken into account when the center-of-mass mo-
mentum of the atomic cloud is accelerated to the avoided
crossing point [40]. For convenience, we denote that k ¼
ðk?; kkÞ with k? and kk the momenta perpendicular and

parallel to F, respectively. Since k? is unchanged, it is
useful to define ~Egðk?Þ ¼ min½Eþðk?Þ� as the minimum of

the upper subband energy with fixed k?. Then, a state

initially at a lower band and with momentum k transitions

to the upper band with the LZ probability �pðk?Þ ¼
e�� ~E2

gðk?Þ=ðvF jFjÞ [40]. The averaging transition probability
is given by PLZ ¼ R

d2rd2k��ðr;kÞ �pðk?Þ=
R
d2rn�ðrÞ,

with numerical results shown in Fig. 3 for different pa-
rameter regimes.
The LZ transition leads to the splitting of the atomic

cloud from one to two, which provides a detection of the
critical point of the topological phase transition. The nu-
merical results are shown in Fig. 4. For the cases withmz *
4ts [Fig. 4(a)] and mz & 4ts [Fig. 4(b)], a tiny bulk gap is
located at �1 ¼ ð0; 0Þ. Applying the static force along the
êx0 direction, we can see that the atomic cloud first is
deflected to the êy0 [for (a)] or the �êy0 [for (b)] direction

and then splits into two when the central momentum is
accelerated to the �1 point. The atomic cloud correspond-
ing to the lower subband keeps the original deflection
route, while the new cloud formed by the atoms in the
upper band states is deflected oppositely, reflecting thatB�
are opposite in the z direction. Similarly, by tuningmz � 0,
one can detect the phase transition due to the gap closing at
�2 and �3 by applying the force along the êx (or the êy)

direction [Figs. 4(c) and 4(d)].
In conclusion, we proposed to detect 2D Chern insula-

tors by measuring the bulk states at four highly symmetric
points of the BZ. From a natural correspondence between
the TR invariant topological insulator and the QAH sys-
tem, we show for a class of Chern insulators that the
topology can be determined by measuring the parity eigen-
states at only highly symmetric points of the BZ.
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FIG. 3 (color online). Landau-Zener probability PLZ for the
atomic cloud evolving through the avoided band crossing point,
as a function of (a) mz and of (b) jFaj. For the numerical
calculation, the initial atomic cloud has a narrow momentum
distribution with radius relative to the central momentum (at the
band bottom) about krad ’ 0:2=a.

FIG. 4 (color online). Atomic cloud splitting induced by the
LZ transition close to the phase transition points. A tiny bulk gap
opens at k ¼ �1 for (a)mz ¼ 4:05t0 and (b)mz ¼ 3:95t0, and at
k ¼ �2, �3 for (c) mz ¼ 0:05t0 and (d) mz ¼ �0:05t0, with the
magnitude of the gap Eg ¼ 0:05t0. Other parameters are taken as

tSO ¼ t0 ¼ 2�� 0:52 kHz, and the force jFj ¼ 0:2t0=a applied
along the (a),(b) êx0 and the (c),(d) êx directions, respectively.
The arrows represent the directions of atomic cloud motion.
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Moreover, the detection relies on only qualitative rather
than quantitative measurements on physical numbers. This
enables a much simpler strategy to detect the topological
phases comparing with conventional methods to measure
the edge states or bulk Chern invariants. We further intro-
duced two realistic experimental schemes to carry out the
measurement, and our detection strategy can be applied to
both square and honeycomb lattice systems, the two most
relevant configurations for the cold atom experiments [35].
It is noteworthy that these schemes can also be directly
applied to the detection of TR invariant topological insu-
lators. Our work showcases the advantages of cold atoms
since the parity eigenstates are hard to directly measure in a
condensed matter system. Our results can provide a power-
ful tool to detect topological phases in cold atoms.
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