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A thermodynamically consistent gradient dynamics model for the evolution of thin layers of liquid

mixtures, solutions, and suspensions on solid substrates is presented which is based on a film-height- and

mean-concentration-dependent free energy functional. It is able to describe a large variety of structuring

processes, including coupled dewetting and decomposition processes. As an example, the model is

employed to investigate the dewetting of thin films of liquid mixtures and suspensions under the influence

of effective long-range van der Waals forces that depend on solute concentration. The occurring fluxes are

discussed, and it is shown that spinodal dewetting may be triggered through the coupling of film height

and concentration fluctuations. Fully nonlinear calculations provide the time evolution and resulting

steady film height and concentration profiles.
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Understanding the behavior of free surface layers and
drops of simple and complex liquids becomes increasingly
important because the drive towards further miniaturiza-
tion of fluidic systems towards micro- [1] and eventually
nanofluidic [2] devices depends on our ability to gain
control of the various interfacial effects on small scales.
Liquid layers frequently occur either naturally, e.g., as a
tear film in the eye, or industrially, e.g., as protection or
lubrication layers. They are also instrumental in many wet
process stages of printing, (nano-)structuring, and coating
technologies where films or drops of a liquid are applied to
a surface with the aim of producing a homogeneous or
structured layer of either the liquid or a solute. For reviews,
see Refs. [3–6].

Their omnipresence in natural and industrial processes
provides a strong incentive to investigate the creation,
instabilities, rupture dynamics, and short- and long-time
structure formations of free surface thin liquid films on
solid substrates. These processes are well investigated
experimentally [7,8] and theoretically [9,10] for films of
simple liquids on smooth solid substrates. Continuum
models describe the evolution of the film thickness
profile hðx; tÞ as a gradient dynamics @th ¼
r � fQðhÞr�F½h�=�hg for the free energy F½h� ¼R
dx½��þ fðhÞ� [11] that accounts for wettability through

the local wetting energy fðhÞ and for capillarity through
the local surface energy �� [6]. Here, �dx ¼
ð1þ 1

2 jrhj2Þdx is the long-wave (or small-gradient) ap-

proximation of the surface area element in Monge parame-
trization, � is the liquid-gas interface tension, the
variational derivative �F½h�=�h ¼ ���h��ðhÞ corre-
sponds to the pressure where �ðhÞ ¼ �df=dh is the
Derjaguin or disjoining pressure [12–14], QðhÞ ¼ h3=3�
is the mobility function in the case of no slip at the
substrate where � is the dynamic viscosity (for the case
of slip, see, e.g., Ref. [15]), x ¼ ðx; yÞT , andr ¼ ð@x; @yÞT .

The described model may be derived via a long-wave
approximation from the Navier-Stokes and continuity
equations with adequate boundary conditions at the free
surface and the solid substrate [3,4,16].
The dynamics of films of simple liquids is rather well

understood. However, the situation strongly differs for films
of complex liquids as, for instance, colloidal (nano-)particle
suspensions, mixtures, polymer and surfactant solutions,
polymer blends, and liquid crystals. Practically, layers of
such complex liquids occur far more widely than films
of simple liquid, but a systematic understanding of the
possible pathways of their evolution that result from the
coupled processes of dewetting, decomposition, evapora-
tion, and adsorption has not been reached. Free surface films
of such liquids occur, for instance, as tear films [17], lung
lining [18], in the production of organic solar cells [19], or
semiconductor nanoparticle rings [20]. Layers of solutions
and suspensions with volatile solvent are frequently
employed in intermediate stages of the production of homo-
geneous or structured layers of the solute, e.g., as a non-
lithographic technique for covering large areas with regular
arrays of small-scale structures. Reviews of experiments,
models, and applications can be found in Ref. [21] (surfac-
tant solutions), Refs. [22,23] (deposition processes from
solution), and Ref. [24] (polymer blends). Although in
all these systems the interfacial effects of capillarity and
wettability are still the main driving forces, they may now
interact with the dynamics of inner degrees of freedom as,
e.g., the diffusive transport of solutes or surfactants, phase
separation, and other phase transitions, or the evaporation
or condensation of solvent- and concentration-dependent
wettability.
The present work provides a consistent framework for

the theoretical description of many of the observed
dynamical processes in films of liquid mixtures, solutions,
and suspensions. After introducing the model, we discuss
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limiting cases and elucidate the physical meaning of the
occurring fluxes. As an example, we apply the presented
general framework to the case of a film of a liquid mixture
where the wettability depends on the local concentration.
This shows that dewetting may be triggered through the
coupling of film height and concentration fluctuations.

We consider a thin nonvolatile liquid film of a mixture
on a solid substrate (see Fig. 1) that without additional
influx of energy relaxes towards some static equilibrium
state, much as in many of the experiments reviewed in
Ref. [24]. In the case without evaporation, the approach to
equilibrium for this relaxational system is described by a
gradient dynamics of the underlying free energy functional

F½h; c � ¼
Z
½��þ fðh;�Þ þ hgð�Þ þ��dA: (1)

It is an extension of the above introduced F½h� that
accounts for (i) a dependence of the wetting energy on
local concentration, (ii) the bulk free energy of the mixture
per substrate area hgð�Þ, and (iii) the energetic cost of
strong gradients in the concentration (through � ¼
ð�=2Þhjr�j2, where � is the interfacial stiffness).

The gradient dynamics has to be written in terms of the
conserved fields, film thickness hðx; tÞ, and effective local
solute layer thickness c ðx; tÞ ¼ hðx; tÞ�ðx; tÞ. The non-
conserved field � is the dimensionless height-averaged
per volume solute concentration. The general coupled
evolution equations for two such conserved order para-
meter fields in the framework of linear nonequilibrium
thermodynamics are

@th ¼ r �
�
Qhhr�F

�h
þQhcr �F

�c

�
;

@tc ¼ r �
�
Qchr�F

�h
þQc cr �F

�c

�
:

(2)

The mobility matrix

Q¼ Qhh Qhc

Qc h Qc c

 !
¼ 1

3�

h3 h2c

h2c hc 2þ3� ~Dc

 !
(3)

is symmetric and positive definite, corresponding to
Onsager reciprocal relations and the condition for positive

entropy production, respectively [25]. ~D is the molecular
mobility of the solute.
To perform the variations in Eqs. (2), one has to replace

� everywhere by c =h. The extended free energy (1) for a
film of a mixture [11] results in convective and diffusive
fluxes (for brevity, written in terms of h and �)

Jconv ¼ h3

3�

�
�r�h� r@hfþ @�f

h
r�

� �

h
½r � ðhr�Þ�r�� �

2
rjr�j2

�
; (4)

Jdiff ¼ � ~Dh�r
�
@�f

h
þ @�g� �

h
r � ðhr�Þ

�
; (5)

respectively. Employing the fluxes, we bring the gradient
dynamics equations (2) into the form

@th ¼ �r � Jconv; (6)

@tð�hÞ ¼ �r � ð�Jconv þ JdiffÞ; (7)

which is common in the hydrodynamic literature [3,21,26].
Before discussing important limiting cases, we elucidate

the physical meaning of the individual flux contributions.
In the convective flux [Eq. (4)], the first term is due to
Laplace pressure gradients [3]; the second term is the
Derjaguin pressure contribution due to wettability; and
the final two terms represent the Korteweg flux, i.e., a
bulk concentration-gradient-driven flux (cf. Ref. [27] for
a discussion of the related bulk modelH). The third term is
a flux driven by concentration gradients within the bulk of
the film but only if the film is sufficiently thin such that its
two interfaces ‘‘feel’’ each other. This novel flux is a direct
consequence of the concentration dependence of the
wetting energy fðh;�Þ and has a similar magnitude as
the Derjaguin pressure contribution [28].
The first term of the diffusive flux [Eq. (5)] is also

uncommon in the literature, although it is a natural con-
sequence of the gradient dynamics form (2). It represents
the influence of the concentration-dependent wettability
on diffusion. The second term is the flux due to gradients
of the chemical potential � ¼ @�g in the bulk of the film

while the final term is a Korteweg contribution to diffusion
that counters steep concentration gradients, e.g., for
decomposing solvent-solute films.
The general evolution equations [(6) and (7) with (4) and

(5)] recover several known models as limiting cases (this is
used to determine Q). Most importantly, (i) for a constant
film height h, without wettability contribution (f ¼ 0) and
appropriately defined bulk free energy g, Eq. (7) becomes
the Cahn-Hilliard equation that describes, e.g., the spinodal
decomposition of a binary mixture [31]; (ii) as in (i) but
with � ¼ 0 and a purely entropic (ideal gaslike)

g ¼ gidð�Þ ¼ kBT

a3
�ðlog�� 1Þ; (8)

FIG. 1 (color online). Sketch of the considered geometry for a
film of a liquid mixture whose components we call solvent and
solute. The relevant conserved fields are the film height profile h
and the effective local solute layer thickness c ¼ h�, where �
is the nonconserved height-averaged solute concentration.
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where a is a molecular length scale related to the solute,
one recovers the standard diffusion equation with diffusion
constant ~DkBT=a

3 (see, e.g., Sec. IV of Ref. [32]);
(iii) for f ¼ fðhÞ, � ¼ 0, and g ¼ gid, one recovers the
conserved part of long-wave equations used, e.g., to
study dewetting of and solute deposition from solutions
and suspensions [26,33,34]; and (iv) again without wett-
ability, but with Korteweg fluxes (� � 0), and employing
the double-well potential g� ð�2 � 1Þ2 for the solvent-
solute interaction, one obtains the thin film limit of model
H [27] as derived recently via a long-wave asymptotic
expansion [35,36].

Next, we present as an example the practically relevant
case of a solute-dependent wettability, i.e., f ¼ fðh;�Þ.
For clarity, we only include entropic bulk terms for the
solute-solvent interaction, i.e., g ¼ gid [Eq. (8)] and
@�g ¼ ðkBT=a3Þ log�, implying absolute stability against

bulk solute-solvent decomposition. For the wetting energy,
we use the combination of long-range van der Waals
interactions and an always stabilizing (B> 0) short-range
contribution [14,37]:

fðh;�Þ ¼ �Að�Þ
2h2

þ B

5h5
: (9)

Note that we combine a concentration-dependent
Hamaker ‘‘constant’’ Að�Þ and a constant B. One may
as well introduce a concentration-dependent short-range
contribution or use a different form for the short-range
contribution [38]; however, these choices do not affect
the main results. The Derjaguin pressure is �ðh;�Þ ¼
�@hf while @�f could be called a Derjaguin chemical

potential. Að�Þ is determined employing homogenization
techniques. For many experimentally employed mixtures,
such as e.g., poly(methyl methacrylate)/polystrene
(PMMA/PS), toluene/acetone, or PS/toluene on Si or
SiO, a linear dependence is an excellent approximation
over the entire concentration range [39]. Selecting the case
where the pure solvent is wetting A0 � Að� ¼ 0Þ< 0, we
write Að�Þ ¼ jA0jð�1þWc�Þ, where the nondimen-
sional number Wc quantifies the strength of the concen-
tration dependence of wettability. Experimentally, Wc
may be changed by choosing a different solute. For the
materials we are interested in, jA0j varies in the range
½10�22; 10�19� Nm and Wc lies in the range [�10, 15].
For example, a mixture of PS and PMMA on a silicon (Si)
substrate (used, e.g., in Ref. [40]) yields A0 ¼ �2:22�
10�19 andWc ¼ �0:11, and for a solution of PS in toluene
on silicon oxide (SiO), one obtains A0 ¼ 1:74� 10�21 and
Wc ¼ 7:1, while a mixture of toluene and acetone on SiO
gives Wc ¼ �9:0.

Note that for A0 < 0 and Wc< 0, both a film of pure
solvent and a film of pure solute are absolutely stable. With
g ¼ gid, the bulk solute-solvent mixture is stable as well.
A film of mixture might then be expected to be stable for
all Wc< 0 and to become unstable for Wc> 0 when

Wc�> 1 because then Að�Þ> 0. This expectation, how-
ever, assumes that the mixture in the film remains homo-
geneous, i.e., that concentration fluctuations are always
damped. However, a linear stability analysis of flat homo-
geneous films with respect to fluctuations �h and �c
shows that the fluctuations in film height and concentration
couple, rendering the system more unstable. Figure 2(a)
shows that even for Wc< 0, where all decoupled subsys-
tems are stable, the film of a mixture can be linearly
unstable in an extended experimentally accessible range
of the parameter space.
Here, the dimensionless number Ew ¼ kbTl

3=jA0ja3 is
the ratio of entropic and wetting influences [41]. In other
words, a film of stable solvent can be destabilized by a
stable solute if the diffusion of the solute is sufficiently
weak, i.e., if Ew is sufficiently small. For common mix-
tures, solutions, and nanoparticle suspensions, Ew can
range from Oð10�4Þ to Oð104Þ. The estimate is based on
a typical precursor thickness of l � 1 nm [42] and a solute
length scale a between 0.1 and 10 nm (this corresponds,
e.g., to the size of molecules or (nano-)particles diffusing
in the film) [39]. Also for Wc> 0, the film becomes
unstable at smallerWc than expected under the assumption
that the mixture stays homogeneous [dashed line in
Fig. 2(a)]. Because h and c are both conserved, the
instability is of long wavelength; i.e., at onset (at critical
Wc or Ew), it has a zero wave number (cf. Ref. [6]).
Therefore, for finite domains, the stability borders in
Fig. 2(a) are slightly shifted.
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FIG. 2 (color online). Shown is in (a) the linear stability of flat
homogeneous films (of thickness h0=l ¼ 15 and concentration
�0 ¼ 0:2) with respect to coupled fluctuations in film height and
concentration in the plane spanned by the ratio of entropic and
wetting influences Ew and the strength of the concentration
dependence of wettability Wc. For parameter values Ew ¼
0:002 and Wc ¼ �3 marked by the red circle in (a), panels
(b) and (c) show for the case of one spatial dimension (dimen-
sionless domain size D=L ¼ 1500) space-time plots of the fully
nonlinear coupled short-time evolution of the height and con-
centration profiles, respectively. Time is given in units of the
typical time �lin of the fastest linear instability mode. In all
calculations, the nondimensional interfacial stiffness is fixed to
�=ðl�Þ ¼ 0:1 while the nondimensional surface tension is set to
one through the choice of the lateral length scale L [41].
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Starting from a homogeneous flat film, we illustrate in
Figs. 2(b) and 2(c) the resulting spontaneous structure
formation [43]. During the shown linear and nonlinear
stages of the short-time evolution, the steady state shown
in Fig. 3(b) is approached [43]. In a large domain, many
such small droplets will undergo a long-time coarsening
process (not shown) to reach pancakelike drops, as shown
in Fig. 3(b) forD=L ¼ 105. Inspecting the h and� profiles
and the energy in Fig. 3, the physical mechanism that
drives the structuring becomes clear: Although the film
cannot reduce its energy by modulating its thickness profile
at homogeneous concentration, it is still able to do so by
simulaneously modulating its thickness and concentration
profiles. In the present example, the solute is enriched
(depleted) in the thicker (thinner) part of the profile. The
characteristics of the coexisting flat parts visible in
Fig. 3(b) for D=L ¼ 105 may also be obtained through
an analysis of the binodals of the system, i.e., of the film
height and concentration values at coexistence [39]. Note
that the structuring results in extended flat regions of
different heights that are still much larger than the vertical
length scale; i.e., all regions may still accommodate a
diffusing solute with a > l. Furthermore, one may include
steric effects due to the solute size into the free energy.

The presented example illustrates that the above intro-
duced thermodynamically consistent long-wave model
allows one to predict a novel interface instability for
thin films (below about 100 nm) of liquid mixtures and
suspensions under the influence of long-range van der
Waals forces that are concentration dependent. The result-
ing coupling of film height and concentration fluctuations
always renders such films more unstable than the
decoupled subsystems. The chosen numerical example
shows that the destabilization can even occur if all
decoupled subsystems are unconditionally stable.
However, the presented gradient dynamics formulation
has further far-reaching implications for the description
of thin films of complex fluids: For so-called nanofluids
(nanoparticle suspensions), often a structural Derjaguin
pressure [44] is included into the hydrodynamic

description [45,46]. However, Eqs. (5) show that this is
incomplete. Instead, a structural wetting energy has to be
introduced that results, in consequence, in additional con-
tributions to the convective, diffusive (and evaporative)
flux. An accounting for attractive solvent-solute interac-
tions (beyond the entropic term considered in the example)
allows one to investigate how the various decomposition
and dewetting instability modes couple, resulting in a
number of different instability types and evolution path-
ways somewhat similar to the ones described for two-layer
films of immiscible liquids [47].
In summary, we have presented a general gradient dy-

namics model and a particular underlying free energy [11]
which is able to describe a wide range of dynamical
processes in thin films of liquid mixtures, solutions, and
suspensions on solid substrates, including the dynamics of
coupled dewetting and decomposition. We have argued
that on the one hand, the model recovers known limiting
cases, including the long-wave limit of model H. On the
other hand, we have discussed the physical meaning of
important contributions that are missing in the hydrody-
namic literature and have shown that they are needed for a
thermodynamically consistent description of, e.g., evolu-
tion pathways controlled by concentration-dependent wett-
ability. As an example, we have investigated the dewetting
of thin films of liquid mixtures and suspensions under the
influence of long-range van der Waals forces that are
concentration dependent.
The presented gradient dynamics form will allow for

systematic future developments. Most importantly, the
here presented model for a film of a mixture without
enrichment or depletion boundary layers at the interfaces
may be combined with models for films with an insoluble
surfactant [32,48] to also describe systems where enrich-
ment or depletion layers form at the interfaces, including
instabilities and structuring processes, as observed in
Ref. [30].
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