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Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a

system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge

invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we

study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the

parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a

U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this

gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of

the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss

the atomic characteristics of the Higgs phase in each simulator.
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In the past decade, the possibility of using ultracold
atoms in an optical lattice (OL) as a simulator for various
models in quantum physics seems to have become increas-
ingly more realistic [1,2]. In particular, one interesting
possibility is to simulate lattice gauge theories (LGTs) by
placing several kinds of cold atoms on the links of an OL
according to certain rules [3–12]. Several proposals for
pure U(1) LGTs [13] were given in Refs. [3–8] and later
extended to quantum electrodynamics with dynamical fer-
mionic matter [9,10] and non-Abelian gauge models [11].

Shortly after their introduction by Wilson [14], LGTs
have been studied quite extensively, mainly in high-energy
physics, by using both analytical methods and Monte Carlo
(MC) simulations, and their various properties have now
been clarified. However, the above-mentioned approach
using cold atoms in an OL provides us with another inter-
esting method for studying LGTs. As an example of
expected results, the authors of Ref. [6] refer to clarifica-
tion of dynamics of electric strings in the confinement
phase. The atomic quantum simulations allow one to
address problems which cannot be solved by conventional
MC methods because of the sign problem. One character-
istic point of this cold-atom approach is that the equiva-
lence to the gauge system is established only under some
specific conditions. For example, in Refs. [6–11], one
needs to fine-tune a set of interaction parameters; in other
words, the local gauge symmetry is explicitly lost when
these parameters deviate from their optimal values.

The above-mentioned point naturally poses us serious
and important questions on the stability of gauge symmetry
and the potential subtlety of experimental results of cold
atoms as simulators of LGTs because the above conditions
are generally not satisfied exactly or easily violated in
actual cold-atom systems. In this Letter, we address this
problem semiquantitatively and exhibit the allowed range

of violation of the above conditions, such as the regime of
interaction parameters, within which the results can be
regarded as having LGT properties. In addition, we find
that the cold atoms in question may be used as a quantum
simulator of a wide class of U(1) gauge-Higgs model, i.e., a
Ginzburg-Landau-type model in the London limit coupled
with the gauge field, the dynamics of which should offer us
important insights on several fields, including inflational
cosmology [15].
Let us start with the path-integral representation of the

partition function Z of the compact U(1) pure LGT, the
reference system of the present study:

Z ¼
Z
½dU� expðAÞ;

Z
½dU� � Y

x;�

Z 2�

0

d�x�

2�
;

A ¼ c2
2

X
x

X
�<�

�Ux�
�Uxþ�;�Uxþ�;�Ux� þ c:c:

¼ c2
X
x

X
�<�

cos�x��; �x�� � r��x� �r��x�;

Ux� � expði�x�Þ; r�fx � fxþ� � fx; (1)

where x ¼ ðx1; x2; x3; x4Þ is the site index of the 3þ 1 ¼
4D lattice (x4 is the imaginary time in the path-integral
approach) and � and �ð¼ 1; 2; 3; 4Þ are the direction indi-
ces that we also use as the unit vectors in the �th and �th
directions. The angle variable �x� 2 ½0; 2�Þ and its expo-

nential Ux� are the gauge variables defined on the link

(x, xþ�) [16]. The bar in �Ux� implies a complex con-

jugate, and c2ð� 1=e2Þ is the inverse self-gauge-coupling
constant. The product of four Ux� is invariant under the

local (x-dependent) U(1) gauge transformation

Ux� ! U0
x� � Vxþ�Ux�

�Vx; Vx � expði�xÞ; (2)

and so are the field strength �x�� and the action A. It is

known [17] that the system has a weak first-order phase
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transition at c2 ¼ c2c ’ 1:0. For c2 < c2c (> c2c), the sys-
tem is in the confinement (Coulomb) phase in which the
fluctuations of �x� are strong (weak). In the Coulomb

phase, �x� describes almost-free massless particles, which

correspond to photons in electromagnetism [16].

To obtain the quantum Hamiltonian Ĥ for Z, let us focus
on the space-time plaquette term cos�xi4 in Z with the
spatial direction index ið¼ 1; 2; 3Þ and rewrite it as

expðc2 cos�xi4Þ
’ X

mxi2Z

exp

�
� c2

2
ð�xi4 � 2�mxiÞ2

�

/ X
Exi2Z

exp

�
�iExiðri�x4 �r4�xiÞ � 1

2c2
E2
xi

�
; (3)

where we used the Villain (periodic Gaussian) approxima-
tion in the first line and Poisson’s summation formula in
the second line. The term iExir4�xi ’ id�Exi

_�xi (� is the

imaginary time and _f � df=d�) shows that the integer-
valued field Exi on the spatial link (x, xþ i) is the
conjugate momentum of �xi. Thus, the corresponding op-
erators at the spatial site r ¼ ðx1; x2; x3Þ satisfy the canoni-
cal commutation relation ½Êri; �̂r0i0 � ¼ �i�rr0�ii0 . The

operator Êri represents the electric field in electromagne-
tism but has integer eigenvalues, owing to the compactness
(periodicity) of A under �x� ! �x� þ 2�. The integration

over �x4 can be performed as

G �
Z Y

x

d�x4 exp

�
�i

X
x;i

Exiri�x4

�
¼ Y

x

�Qx;0;

Qx �
X
i

riExi; (4)

where we used
P

x;iExiri�x4 ¼ �P
x;iriExi � �x4, which

holds for a lattice with periodic boundary conditions.

One may check that the quantum Hamiltonian Ĥ which
gives Z at the inverse temperature� is just the one given by
Kogut and Susskind [18]

Ĥ ¼ 1

2c2��

X
r;i

Ê2
ri �

c2
��

X
r;i<j

cos�̂rij; (5)

with ��ð� �=NÞ being the short-time interval in the �

direction. The cos�̂rij term corresponds to the magnetic

energy ð ~r� ~AÞ2 in the continuum [16]. In fact, by insert-

ing the complete sets 1̂E ¼ Q
r;i

P
Eri

jfErigihfErigj and

1̂� ¼ Q
r;i

R
d�rijf�rigihf�rigj in between the short-time

Boltzmann factors expð���ĤÞ, one may derive the rela-

tions Z ¼ Tr Ĝ expð��ĤÞ, Ĝ � Q
r�Q̂r;0

, and Q̂r �P
iriÊri [19]. Here, Q̂r is the generator of the time-

independent gauge transformation and Ĥ respects this

symmetry as ½Ĥ; Q̂r� ¼ 0. Gauss’s law Q̂r ¼ 0 is to be
imposed as a constraint for physical states.

Let us discuss the cold-atom studies [3–12], specifically
focusing on the quantum simulator using a Bose-Einstein
condensation (BEC) in an OL [6]. We write the boson

operator on the link as ĉ ri ¼
ffiffiffiffiffiffiffi
�̂ri

p
exp½ð�Þri�̂ri�, ð�Þr ¼

ð�Þx1þx2þx3 , where we use the same letter �ri as �x� in

Eq. (1) because the former is to be identified as the latter.
We start with the following atomic Hamiltonian [6]

Ĥa ¼
X
r;a;b

�
gab�̂ra�̂rb þ V0

2
�̂2
ra þ g0abðĉ y

ra ĉ rb þ H:c:Þ
�
;

(6)

where a, b ¼ 1–6 counts the links emanating from each
site. The gab term describes the denisty-density interaction,
the V0ð>0Þ term is the on-link repulsion, and the g0ab term
is the hopping term induced by external electromagnetic
fields. We assume that the average h�̂rii ¼ �0 is homoge-
neous and large �0 � 1, and set �̂ri ¼ �0 þ ð�Þr	̂ri,
where 	̂ri is the density fluctuation. Then, by choosing
gab and g0ab suitably [6–11] as gab ¼ gð>0Þ for any a and

b, g0ab ’ 0 for parallel link pairs, and g0ab ¼ g0 for perpen-
dicular pairs, Ĥa is rewritten effectively as

Ĥa ¼ 1

2
2

X
r

�X
i

ri	̂ri

�
2 þ V0

X
r;i

	̂2
ri þ ĤLðf�̂rigÞ;

ĤL ¼ 2g0�0

X
r;i<j

½cosð�̂ri � �̂rjÞ þ � � ��: (7)

The term with 
2ð� g�1Þ comes from the gab term and
represents the strength of the correlation of fluctuations 	̂ra

around each site (partial conservation of atomic number).
We note that setting gab independent of a and b and
controlling its magnitude g ¼ 
�2 may be achieved by
designing the OL suitably or by using interspecies
Feshbach resonances [6–11]. Some theoretical ideas for

the latter are also proposed [20]. ĤL describes the phase
correlation between the L-shaped nearest-neighbor (NN)
links [the omitted terms in the sum are explicitly written in
AL of Eq. (10) below]. We use the coherent state jfc rigi
and 1̂ ¼ Q

r;i

R
d�rid�rijfc rigihfc rigj to obtain the path

integral for Za ¼ Tr expð��ĤaÞ as

Za ¼
Z Y

x;i

½d	xid�xi� exp
�X

x;i

ð�i	xir4�xi � ��V0	
2
xiÞ

� ��

2
2

X
x

�X
i

ri	xi

�
2 � ��

X
x4

HLðf�xigÞ
�
: (8)

The first term in the exponent in the rhs comes fromP
x4
�c xir4c xi ’ i

P
x4
	xir4�xi and shows that �	̂ri is the

conjugate momentum of �̂ri, whereby Êri ¼ �	̂ri.

The Gaussian factor ~G � Q
x exp½ð���=2
2ÞQ2

x� in
Eq. (8) with Qx � �P

iri	xi shows that Gauss’s law

Qx ¼ 0 of Eq. (4) is achieved by ~G / Q
x�ðQxÞ only at


 ! 0, and it is now shifted for 
 > 0 to a Gaussian
distribution with Q2

x & 
2=��. Thus, 
 is a parameter
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used to measure the violation of Gauss’s law. Note that ~G
may be written as

~G ’
Z 2�

0

Y
x

d�x4
2�

exp

�

2

��
cos�x4 � i�x4

X
i

ri	xi

�
: (9)

By integrating Eq. (8) with Eq. (9) over 	xi 2 ð�1;1Þ,
one obtains a term�ð4��V0Þ�1ðr4�xi �ri�x4Þ2, which is
a part of the Gaussian Maxwell term. However, this result
should be improved to respect the periodicity under �xi !
�xi þ 2� because �xi is the phase of the condensate. This
Gaussian term is to be replaced, e.g., by a periodic
Gaussian form or by the corresponding cosine form
cos�xi4 as in Eq. (3) (which may be achieved by summing
over the integer 	xi). After the summation over 	xi, Za

may be expressed by the following general form:

Za¼
Z
½dU�expðAaÞ; Aa¼AIþAPþAL;

AI¼
X
x;�

c1�cos�x�; AP¼
X

x;�<�

c2��cos�x��;

AL¼
X

x;�<�

c3��½cosð�x���x�Þþcosð�x�þ�xþ�;�Þ

þcosð�xþ�;���xþ�;�Þþcosð�x�þ�xþ�;�Þ�: (10)

The anisotropic parameters in Aa are given as follows:

c14 ¼ 
2=��, c1i ¼ 0, and c2i4 ’ ð2��V0Þ�1. ĤL with
general values of g0 directly gives rise to the AL term
with c3i4 ¼ 0 and c3ij ¼ 2g0�0��, while c2ij ¼ 0 [21].

We note that for g0 much smaller than 
�2 and/or V0,

one may treat ĤL as a perturbation. In Refs. [6,7,10], the
case 
 ’ 0 is considered to enforce Gauss’s law, and the
second-order perturbation theory is invoked to obtain an
anisotropic version of the Kogut-Susskind Hamiltonian (5)
as an effective Hamiltonian for the gauge-invariant sub-
space. This implies c2ij ’ 
2�2

0g
02�� and c3�� ¼ 0 in

Eq. (10). We refer to this case later as the 
 ’ 0 case.
Concerning c1i, we note that nonvanishing c1i terms may

be incorporated into the cold-atom system by an idea

discussed in Ref. [22]; one may couple to ĉ ri the atomic
field âri in another hyperfine state held in a different

trapping potential via the interaction Ĥac ¼ �
P

riâ
y
ri ĉ ri þ

H:c: If âri condenses uniformly at sufficiently high tem-

peratures, âri works as a BEC reservoir and Ĥac supplies

the c1i term effectively with c1i ¼ 2�jhariij ffiffiffiffiffiffi
�0

p
��. A

similar idea is also discussed in Ref. [3] to generate the
c2ij (spatial plaquette) term.

The AI and AL terms in Eq. (10) apparently break U(1)
gauge invariance. However, the model Za of Eq. (10) with
a general set of parameters is equivalent to another LGT
with exact U(1) gauge invariance, i.e., the U(1) gauge-
Higgs model containing a Higgs field �x. �x is a complex
field defined on site x and takes the form �x ¼ expði’xÞ;
that is, its radial excitation is frozen (so-called London
limit). The partition function of the U(1) gauge-Higgs
model ZGHð¼ ZaÞ is defined by

ZGH ¼
Z
½d��½dU� expAGHðfUx�g; f�xgÞ;

AGH ¼ A0
I þ AP þ A0

L;
Z
½d�� � Y

x

Z 2�

0

d’x

2�
;

A0
I ¼

X
x;�

c1� cosð’x þ �x� � ’xþ�Þ;

A0
L ¼ X

x;�<�

c3��½cosð’xþ� þ �x� � �x� � ’xþ�Þ

þ cosð’x þ �x� þ �xþ�;� � ’xþ�þ�Þ
þ cosð’xþ� þ �xþ�;� � �xþ�;� � ’xþ�Þ
þ cosð’x þ �x� þ �xþ�;� � ’xþ�þ�Þ�: (11)

AGH in Eq. (11) is gauge invariant under a simultaneous
transformation of Eq. (2) and

�x � ei’x ! �0
x ¼ Vx�x ð’x ! ’0

x ¼ ’x þ�xÞ: (12)

In fact, Za is nothing but the gauge-fixed version of ZGH

with the so-called unitary gauge ’x ¼ 0. In short, the
Higgs field �x represents a fictitious charged matter field
to describe the violation of chargeless Gauss’s law in ultra-
cold atoms, where the general Gauss’s law with a charged
field is intact. This relation between a gauge-invariant
Higgs model and its gauge-fixed version in the unitary

gauge holds for a general action ~AðfUx�gÞ as

Z
½dU�e ~AðfUx�gÞ ¼

Z
½dU�½d��e ~Aðf ��xþ�Ux��xgÞ: (13)

Equation (13) is already known in high-energy physics
where the standard U(1) gauge-Higgs model is the sym-
metric one c1� ¼ c1, c2�� ¼ c2, c3�� ¼ 0, and used to

discuss, e.g., the so-called complementarity relation
between excitations in the confinement and Higgs phases
[23]. However, its relevance to the quantum atomic simu-
lator is quite important because the relation Za ¼ ZGH

leads to a very interesting interpretation that the cold-
atom systems proposed in Ref. [6] and the other related
models [7–9,24] with a general set of values of parameters
can be used as a simulator of a wider range of field theory,
i.e., U(1) LGT including the Higgs couplings. For example,
atomic simulations of the standard U(1) gauge-Higgs
model above certainly open a new way to understand
various phenomena including the inflation process of the
early Universe [15] and vortex dynamics of bosonized t-J
model [25].
Let us study the global phase structure of the gauge-

Higgs model ZGH. We consider the following models of
ZGH for definiteness:
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Model Symbol c14 c1i c2i4 c2ij c3i4 c3ij

IP j c1 c1 c2 c2 0 0

ItPtLs ? c1 0 c2 0 0 c3

ItPLs � c1 0 c2 c2 0 c3

PL m 0 0 c2 c2 c3 c3

(14)

Model ItPtLs (t denotes time and s denotes space)
corresponds to the choice explained below Eq. (10).
Model PL with c3 ¼ 0 corresponds to the 
 ’ 0 case,
i.e., the pure gauge theory (5) [26,27]. Figure 1 shows
the phase diagrams of the four models in Eq. (14) in the
c2-c1;3 plane obtained by standard MC simulations [28].

There are generally three phases—Higgs, Coulomb, and
confinement—in the order of increasing size of fluctua-
tions of the gauge field �x�. These three phases can be

characterized by the potential energy VðrÞ stored between
two static charges with opposite signs and separated by a
distance r, as VðrÞ / 1=r ðCoulombÞ, expð�mrÞ=r ðHiggsÞ,
and r ðconfinementÞ. One may distinguish each phase in
the cold-atom experiments by measuring atomic density
(see Fig. 2).

Figure 1 also shows that the confinement and Coulomb
phases of the pure gauge theory along the c2 axis survive
only up to the phase boundary c1ð3Þ ¼ c1ð3Þcðc2Þ (except for
c2 & 0:8 in model IP); beyond this value of c1ð3Þ, the
system enters into a new phase, the Higgs phase, in which
both �x� and ’x are stable. The expectation that the cold

atoms may simulate the pure gauge theory [6,7,10] is
assured qualitatively and globally as long as both systems
are in the same phase. This occurs for the atomic parame-
ters satisfying c1ð3Þ < c1ð3Þcðc2Þ.

The confinement-Coulomb transition exists only for
models having c2i4 � 0 and c2ij � 0; model ItPtLs

(c2ij ¼ 0) has no Coulomb phase. This is consistent with

the results of pure U(1) gauge theory that the confinement-
Coulomb transition exists for a 4D system [17] but not in
the 3D system [29]. For sufficiently large c2i4 and c2ij, �x�
is almost frozen �x� ’ 0 up to gauge transformation and

the system reduces to the XY model with the XY spin�x ¼
expði’xÞ. Then, the c1� term becomes the NN spin inter-

action c1� ��xþ��x, and the c3�� term becomes the next-

NN one c3��
��xþ�þ��x. These (extended) XY models

exhibit a second-order transition both for 3D and 4D
couplings, which corresponds to the Higgs-Coulomb tran-
sition in Fig. 1. For small c2��, the confinement-Higgs

transition is missing in model IP (0 � c2 & 0:8), reflecting
that �x� are decoupled at c2 ¼ 0 [23]. In contrast, in the

other three models, the c3 term survives, couples another
set of XY spins expði�x�Þ on NN links, and gives rise to

second-order transitions of the XY model type at c2 ’ 0.
It is quite instructive to clarify the physical meaning of

the Higgs phase of the gauge system realized in atomic
quantum simulators. In the simulator using bosons [6], the
Higgs phase of the effective gauge system is nothing but the
BEC state, as the phase of the bosons (i.e., the gauge boson)
is stabilized coherently. Therefore, the Higgs-confinement
transition corresponds to the BEC transition. On the other

hand, in Refs. [9,11], the gauge field is expressed as Ûri ’
ðẑ
r

rþiÞyẑ
r
r (
r ¼ 1 for even r and 2 for odd r) by using the

Schwinger boson ẑ
r , and the Higgs phase corresponds to

Higgs

Coulomb

1

1

1
1

1

2

2 2 2

2

2

2

1~2

1~2

1~2

2
2

2
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2

2

2 2

2
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1

2

2

0
0
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1
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1

ItPtLs

1~2

2 2 2

FIG. 1 (color online). Phase diagrams of the four models (14)
in the c2 � c1;3 plane determined by U ¼ hAi and C ¼ hA2i �
hAi2 calculated by MC simulations for a lattice size of 164 [28].
The vertical axis is c1 for model IP, c3 for model PL, and c1 ¼
c3 for models ItPtLs and ItPLs. The confinement-Coulomb
transition is missing in model ItPtLs. The number (1, 2) at each
critical point indicates its order of transition. The confinement-
Higgs line of model IP terminates at c2 	 0:8.

Higgs

Coulomb

Confinement

1.00.50.0-0.5
-0.2

0.0

0.2

-0.4

0.0

0.4

-0.2

0.0

0.2

-1.0

FIG. 2 (color online). Contour plot of the deviation of typical
atomic density ��r � ðPi	

2
ri=3Þ1=2 in the x1 � x2 plane at

x3 ¼ 0 with external sources of atoms ��ext ¼ 
�1 placed on
the links emanating from r ¼ r
 ¼ ð
0:4; 0; 0Þ. The white
regions have ��r greater than a certain value, and the darker
regions have lower ��r. The atomic density on the link (r, rþ i)
is given by �ri ¼ �0 þ 	ri [here, we discard the factor ð�Þr in
front of 	ri for simplicity], and the deviation 	xi is calculated by
using the electric field Erið¼ �	riÞ with a pair of external
sources q ¼ 
1 at r ¼ r
. In the Higgs phase, ��r decreases
rapidly away from the sources. In the confinement phase, the
deviation propagates from one source to the other along a one-
dimensional string (electric flux).
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the state in which the quantum state at each link (r, rþ i) is
given by a coherent superposition of the particle-number
states such as j0irj1irþi þ j1irj0irþi. In the double-well
potential, this state is realized naturally, after which the
Higgs phase of the gauge system appears easily.

This way of introducing U(1) variables [9,11] reminds
us of an approach starting with an antiferromagnet with an
s ¼ 1=2 quantum spin at each site and obtaining the
CP1 þ Uð1Þ LGT [30], which has a Schwinger-boson
(CP1) variable at each site describing spins and auxiliary
but dynamical U(1) gauge variables on each link. Although
the CP1 þ Uð1Þ model and the present U(1) Higgs model
are different from each other, their global phase structures
are significantly similar (see Fig. 1 of Ref. [30]).

In summary, Eq. (11) is the target LGT of cold-atom
systems that are basically those studied in Refs. [6,7] but
with more general values of interaction parameters and a
possible atomic reservoir [3,22]. Figure 1 predicts its
global phase structures. From the discussion given in
Refs. [3,6,7,22] and the relation (13), it may be rather
universal that many cold-atom systems with multiplet
(‘‘quantum spins’’) placed on OL links have their U(1)
Higgs LGT counterparts. Such an equivalence between
cold atoms and the U(1) gauge-Higgs model may be ref-
ereed to as ‘‘quantum spin-gauge-Higgs correspondence.’’

[1] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold
Atoms in Optical Lattices: Simulating Quantum Many-
Body Systems (Oxford University Press, New York, 2012).

[2] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267
(2012).
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