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We study various realizations of collective coordinates, e.g., the position of a particle, the charge of a
Coulomb box, or the phase of a Bose or a superconducting condensate, coupled to Luttinger liquids with
N flavors. We find that for a Luttinger parameter (1/2) < K <1 there is a phase transition from a
delocalized phase into a phase with a periodic potential at strong coupling. In the delocalized phase the
dynamics is dominated by an effective mass, i.e., diffusive in imaginary time, while on the transition line it

becomes dissipative. At K = (1/2) there is an additional transition into a localized phase with no diffusion

at zero temperature.
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Diffusion and propagation of massive particles sur-
rounded by a bath is one very challenging problem of
condensed matter. Historically, it started with the cele-
brated Brownian motion [1] in which the interactions
between a classical particle and the microscopic motion
of the classical bath lead to a diffusion, connected by the
Einstein relation to a finite friction.

This problem gets incredibly more complicated when
the bath becomes quantum. Indeed the excitations of the
bath can lead, by Anderson orthogonality effects, to a
modification of the motion of the quantum particle or the
collective coordinate coupled to the bath [2]. One of the
realizations of such a problem is the polaron problem [3]
where the interaction with the vibrations of the lattice leads
to an increase of the mass of the particle and even poten-
tially to self-trapping. This type of problem has recently
benefitted from the recent progress in cold atomic systems
[4]. Indeed, in such systems impurities in quantum baths
can be realized in a variety of manners ranging from Fermi
or Bose mixtures to ions in condensates, and at various
dimensionalities [5—14].

A situation of special interest is provided by a one-
dimensional bath for which the bath-bath correlations can
become highly nonuniversal; i.e., they acquire an interac-
tion dependent power-law correlations characteristics of a
Luttinger liquid (LL) [15]. In that case, special effects can
potentially occur, as is clear from the static impurity case
[16] and mobile ones coupled to single baths [17,18].
In particular, it was shown recently [19] that this led to a
new universality class for the motion of the impurity, for
which, in particular, subdiffusion can occur. This very rich
situation was explored further. On the theory side, diffusive
[20-22], kicked [23,24], and driven impurities [25-27]
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were considered. On the experimental side, driven impu-
rities [12], mixtures of Rb and *'K [13], and 8’Rb experi-
ments with local addressability [14] were successful
implementations of the one dimensional problem.

In this Letter, we study the physics of a collective coor-
dinate coupled to N Luttinger baths (N >> 1), e.g., a particle
position, charge of a Coulomb box, a phase of a Bose-
Einstein condensate (BEC), or a phase of a superconducting
grain, see Fig. 1. These potential experimental realizations
are further examined before the conclusions. We solve this
system allowing for both LL density fluctuations and LL
interaction and derive a novel localization-delocalization
transition, as summarized in Fig. 2. The localized and delo-
calized phases are separated by a line on which the motion
is simply diffusive. We note that the collective coordinate
represents a small system with correlations decaying in

(a)

FIG. 1 (color online). Illustrations of collective coordinates
coupled to LLs: (a) The environment of a few LLs enter a finite
Coulomb box that is under a gate voltage V, and where the total
charge interacts with an effective capacitance. (b) A BEC
condensate with phase 6 is Josephson coupled to bosonic LLs,
shown by their cross section as they cross the figure plane. In a
condensed matter context, the figure could also represent a
superconducting grain coupled to one-dimensional supercon-
ducting wires, which will act as LLs.
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time. The periodic and localized phases are, therefore, of
particular significance since the collective coordinate
acquires long range order due to its interaction with the LLs.

For concreteness, the following presentation uses the
particle coordinate language. We consider a particle of
mass M coupled to a LL with a contact interaction H;,, =
gp(X) where X is the operator measuring the impurity
position and p(x) the density is the LL. We study this
model in the large N limit, so the impurity becomes
coupled to N independent LLs and the interaction becomes
Hiy=g>N  pi(X). The action of the system can be com-
puted by a cumulant expansion in powers of g and only
the second order cumulant remains when g?N = O(1).
Indeed, the fourth order cumulant is of order g*N ~ 1/N
and can be neglected. Using the expression of the
density in a LL [15] p(x, 7) = po — (1/m)d, P(x, 7)+
polelmpoi=dxn]l + H ¢ ] where ¢(x, 7) is the bosonic
phase, and performing the Gaussian integration over the
LL Hamiltonian, the action becomes

M [, A cos(X, — X,)
sa= [or-3 ], TCETIE

where we have used the dimensionless variables X =2 p, X
and M = M/(2mpy)?, m = 2mg?>piN/ A2, 7 is the imagi-
nary time, u the velocity of excitation in the LL, and K the
Luttinger parameter that controls the power-law decay of the
correlation functions. A frequency cutoff A = u/a is used
to have a dimensionless coupling 1 where @ = 1/p, is the
natural momentum cutoff of the LL. In the above expres-
sion, only the oscillating (backscattering) term in the density
has been retained. Indeed, the 9, ¢(x, 7) interaction can be
integrated, leading at long times to (X, — X,/)?/(7 — 7)*,
i.e., an w? term in frequency which can be neglected relative
to the bare kinetic energy term of the impurity Mw?.
We have used that for a LL, one obtains [15]
(1400070 | —{[X(7) = X(2)F + (= PP K,
We have also made the additional assumption, which will be
verified in what follows, that the impurity is less than
ballistic and, thus, that (X, — X,1)?) < u?(7 — 7)%.

To solve for the thermodynamics of (1), first, we con-
sider a renormalization group (RG) process [28] valid for
large m, which was also applied to the K = 1 case [29].
The action (1) is approximated by its short time form
where it becomes Gaussian

1
$0=5 [ M2 + nCeh MoK xR, @)

where [,(1 = cos(wr)/72K) = —2I'(1 — 2K) X
sin(Km)|w|? ! = 7Cklw|* 7!, so that Cg=1—
0.85(K — 1) + O(K — 1)2. The cutoff A is replaced by A’
and the interaction is averaged with S, in the small frequency
interval A’ < w < A leading to dA/7mCgmA. The action
then has a renormalized coefficient n®(A’)>~2K where

k= 77{1 + [(2 - 2K) — L] lnﬁ}, 3)
anl A

with Cx — 1 to st order in either 1/n or 1 — K. Hence, if
K = 1, n® flows to small values, while if K < 1, there is an
unstable fixed point at ., = 1/27(1 — K)). 5 > 7, flows
to large values, while n < 7, flows to smaller values of 7.
One can integrate (3) when 1 < 1, down to n® = 1 below
which the RG is not controlled. The new cutoff is interpreted
as an effective mass [29,30] M*

= All — (2 — 2K)]/226, )

M
which for 71(2 — 2K) < 1, but 79 > 1, i.e., far from the
transition point, represents an exponentially large mass
M* ~ ¢™, as for the K = 1 case [29,30].

To supplement this scenario, and study the properties of
the three resulting phases, we follow a variational scheme
[31] where we find the best quadratic action approximating
the original action (1). The corresponding Green’s function
1/f(w) is a solution of the self-consistent equation

1 —coswTt

2K

2 00
flw) = Mw? + = nAzfsz dr
w 0 T

% ¢~ JoU—coso'n)/(mf(w)) 5)

First, we note that at @ = A the solution is f(w) —Mw?~
|w|*(~1In the following, we focus on w << A andon K <1.
As a first option, we consider f(w) = 9*Cgw?8 1 /A?K2,
The integral in the exponent converges as 7 — 00, SO
itis [} do'/[7f(0')] = [71*Cx(2 — 2K)]™"; hence, (5)
reduces to

n* = ne LT Ck22K1" (6)

This equation has solutions only if =7 is sufficiently
large, ie., 7mCxm(2 —2K)>e. A second possible
solution is f(w) = n*|w|. The exponent behaves as
A1 = coswT)/(mn*w) = 1/(7n*) InAT, since the 7
integral is dominated by long 7, hence,

2 « [ 1 —coswT
o 2-2K—1 -
n*w = 777;/\ /7 .[0 dr T esy no, (1)

which is a consistent solution on a line (1/7n) = 2(1 — K).
The third possible solution is similar to the bare one f(w) =
M*w?, then the exponent behaves as [§(1—coswT)/
(mM* w*)=|7|/2M*, leading to M* =~ M for intermediate
or weak coupling. The variational scheme can be shown to
be related to an RG process [31] from which the fixed point
line Eq. (3) is reproduced. We note that both the RG and the
variational method are valid as weak coupling expansions
where the coefficients in Eq. (3) are small, i.e., large n and
small |1 — K]|.

Thus, the above methods lead to three different possible
behaviors for the system: (i) At 1 — K =1/Q27n) the
particle propagator has the friction form (n|w|)™!; ie.,
the nonlinearity of the cosine and long range effect balance
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each other to produce an equivalent action with
nlw||X(w)|?. (ii) The case 1 — K <1/(27n) flows to small
1 and eventually to an M*w? form, with (X, — X,)?) ~
|7|, which corresponds to a delocalized phase. The effec-
tive mass M™ is identified by the RG flow, as in Eq. (4).
Note that even in this delocalized phase, some effects of
the underlying quasilong range periodicity of the LL with
the wave vector 2mp are still felt by the particle. Indeed,
its correlation at that periodicity is only very slowly decay-
ing (cosX, cosX,) ~ 7~ 2K. This indicates that the particle
has a much greater chance to be found at some particular
places on the chain. This can be understood qualitatively
by the argument that the particle moves in the ‘“charge
density wave” of wave vector 27p, provided by the LL;
hence, the particle diffuses predominantly by tunneling
between lattice sites spaced by 1/p,. On the mathematical
side, this property which is apparent in a first order calcu-
lation in n [31] is in fact known in general in the context
of XY models with long-range interactions [32]. (iii) The
case 1 — K> 1/(2mn) flows to large n with eventually
f(w) ~ 0?71 e, S, of Eq. (2) is a fixed point action.
From this form, one could naively expect the correlations
of (X, — X, ]?) to be convergent and, thus, this phase to be
a localized one. The situation is, in fact, more subtle, and
we discuss this phase in more detail below.

A summary of the various regimes can be found in
Fig. 2, and the corresponding correlation functions are
indicated in Table I. At finite temperatures 7 and after
analytic continuation to the retarded response at real time
t [15], we find the replacements |7| 2K — sinmKe 2K77,
| 712K "2 —sin7r(1 — K)e~@72K7Tt and In|7| — Tt/7n, ie.,
diffusion in real time on the dissipative line.

For K <1, we complement the above analysis by a
mean-field approach similar to the one used in the context
of XY models with long-range interactions [33]. We take
h = (cosX,) as an order parameter. The interaction term

2,

Localized

1k i Periodic Dissipative

Delocalized

1 1 K
0.5 0.75 1

FIG. 2 (color online). Phase diagram for an impurity in a bath
of LLs as a function of the LL parameter K and the interaction
parameter between the impurity and the bath 7. Four regimes
can occur (see text) in which the impurity is delocalized, just
dissipative, periodically localized, or localized. Dashed lines
indicate boundaries out of the control of the perturbative RG.
The corresponding correlation functions are given in Table I.

TABLE 1. Correlations of the phases in Fig. 1 at 7 = 0.
Correlation Delocalized Dissipative Periodic Localized
(cosX,) 0 0 constant 1
(cosX,cosXy) ~|7|7K  ~|7|7?=25 constant 1
(X — Xo)*) ~|7l ~ In|7] 0

in (1) decouples as nA2 " 2Kn [ cosX, [, |t — 7| K =
nAh(1/2K — 1)) [, cosX,. The self consistency
relation, linear in &, is I =7A(1/2K —1) [ _{cos,c0s,)y=
4nMA(1/2K —1); it yields the critical line n,=(2K —1)/
(4MA) above which {(cosX,) # 0. We expect the mean
field result to be more reliable near K = 1/2, where the
range of the interaction increases. As K increases from
K = 1/2, fluctuations will increase the critical value,
eventually joining the transition line with the variational
form n,. = 1/27(1 — K)) near K = 1. Note that mean
field exponents become valid [33] when K <3/4, e.g.,
(cosX.) ~ /n — 7.. In Fig. 2, we plot the transition line
as an interpolation between the mean field at K < 3/4
and the variational form at K > 3/4. We see that the point
K = 1/2 plays an important role, not captured by the varia-
tional or RG approaches. Below this point, the interaction is
so long range that an ordered phase would exist, within the
mean-field solution, for arbitrary strength of the coupling 7.

In the periodic phase, instanton excitations must a priori
be considered since one would have many degenerate min-
ima of the order parameter. Such instantons are known for
the K = 1 case [34,35]. Assuming an instanton with width
70, the interaction term in (1) has the form n(A7,)> 2KBy
while the mass term is ~M/7,; hence, the action is mini-
mized at Ary~(MA)/[(1—K)nBx]"/C2K for K < 1; the
numerical prefactor By is known at K = 1, B; = 7. Note
that the mass term and K # 1 set a finite scale for 7, unlike
the K = 1 case. The instanton action is then

®)

2 —2K)nBg\1/G-2K)3 — 2K
Sinst =~ MA(w)

MA 2-2K’

Such instantons mean that the coordinate X, can tunnel
between neighboring minima of the ordered {(cosX,).
Assuming independent instantons, this would imply that
((X, — X)*) = D|7| has a finite diffusion constant,
D ~ e Sins,

In particular, we consider K — 1/2 and an instanton
localized at 7 = 0. The dominant contribution for the
instanton center at |7| <7, comes from |7'| > 7, that
involves |X,| > |X.| and f|7,|>70 |7/| 72K ~1/(2K — 1),
which diverges at K — 1/2, hence,

1-2K
S(K—»%) =%M[ (X)2 +M

K1) /T(l—cosXT)+S’.

€))

S’ comes from the instanton tails where X, X, are small
(up to 27r) and comparable. This action is similar to the well
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known sine-Gordon system, identifying Bx ~ (2K — 1)!
whose instanton (or soliton) solution has a width 7y ~
(2K — 1)'/2 and action S;, ~ (2K — 1)~(/2_ Assuming
independent instantons, the diffusion constant would di-
verge at K = 1/2, i.e., InD ~ (2K — 1)~"/2. We propose
that the whole range of the periodic phase in Fig. 2 has
instanton solutions with a finite action, with an explicit
solution provided by the sine-Gordon system at K — 1/2.
However, given the long range form of the interaction
within the tail term ', to ascertain the correct behavior of
((X, — X)?) at large time requires further study of how
these instantons interact, which is left for the future.

Next, we consider the system at K < 1/2. This case has
been studied in the context of discrete XY models [36—38]
and was shown to have a phase transition in the limit that
the coupling vanishes as a power of the system size, which
in our case is 8 = 1/T; i.e., there is a critical value for
1(B)'~2X. Hence, at T = 0 the system is fully ordered and
(cosX,) = 1. Furthermore, instanton excitations would
involve the effective coupling 7(8)' ~2X; hence, they will
have diverging action. Extending the mean-field analysis to
K < 1/2yields a critical temperature T, where (1 — 2K) X
(T,/A)' 72K = 2M A n; fluctuations would render T, into a
sharp crossover temperature.

Let us conclude this part by noting that the hypothesis
made at the beginning to neglect X, — X, compared to 7 is,
indeed, justified in all the phases. Furthermore, note that
although the results of the present Letter are derived in the
large-N limit, we, of course, expect them to extend to a
finite number of components as well. For example, for the
Coulomb box case, deviations due to finite N appear at
exponentially small temperatures [39].

Finally, we discuss possible realizations of our model
with various collective coordinates that are potential candi-
dates for experimental studies. (i) A first example that yields
our action (1) is a fermion Coulomb box [40]. Following the
Ambegaokar-Eckern-Schon mapping [41], one introduces a
phase X such that X . measures the charge in the box while
the charging energy corresponds to 1/M. The kernel in (1) is
then 3 ,G, (7 — 7)3 G ;(7' — 7) where i is the channel
index, a, k are internal quantum numbers of the dot and LL,
respectively, and the Green’s functions are for either free
fermions on the dot, ~1/(7 — 7') or for fermions in the LL
(with Luttinger parameter K) ~|r — 7/|~(1/2(K+1/Ky),
Hence, an effective action of the form (1) with 2K = 1 +
(1/2)(K; + 1/K/), realizing only K > 1 cases.

(i) A variation of realization (i) is a system of LLs
that terminates in a Coulomb box, i.e., a region where all
LLs have long range Coulomb interactions with an effec-
tive capacitance, as illustrated in Fig. 1(a). In this case, a
boundary Green’s function [15] is needed G, ;(7 — 7/) ~
|7 — 7/|"V/Ks, hence, K = 1/K and the interesting regime
of Fig. 1 with K <1 is realizable with attractive interac-
tions Ky > 1. In case that Coulomb box region is a normal
metal, we obtain 2K = 1 + (1/Ky).

(iii) A 3rd realization [Fig. 1(b)] corresponds to a BEC
with a phase 6, that weakly couples to bosonic LLs with
boson operators ¥, (1) as ge'®~W,(7) + H.c. The average
now involves the boson’s Greens function ~|7 — 7/|!/2Ks
K;, — oo for noninteracting bosons and K, decreases to 1
for on-site repulsion U — oo. Hence, (1) is realized with
K =1/4K,, and the localized regime (Fig. 1) with K < 1/2
is realizable.

(iv) In analogy with the BEC, a superconducting grain
can Josephson couple to superconducting one-dimensional
wires [Fig. 1(b)]. For attractive short range interactions,
2K = 1/K, and K <1 can be realized by fermions (spin
full in this example) with long range repulsive or attractive
interactions allowing for the interesting regime K << 1.
This case could potentially be realized with the new super-
conducting LaAlO5/SrTiO; nanostructures [42].

(v) Finally, the mobile impurity case may be realized
by an impurity confined in between LL chains forming,
e.g., a hexagon. In this case, the interesting K < 1 regime is
realized by repulsive fermion interactions.

In conclusion, we have studied the physics of LL envi-
ronments that couple to a collective coordinate such as an
impurity position, charge of a Coulomb box, a phase of a
BEC, or that of a superconducting grain. We have shown
that the coupling to the bath leads to various phases for the
collective coordinate ranging from delocalized, dissipa-
tive, periodic, and localized. Our results are summarized
in Fig. 2 and Table I, showing the distinctions among the
various phases. We believe that the large set of realizations
for the collective coordinate and the various phase transi-
tions will stimulate further research.
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