PRL 111, 115301 (2013)

PHYSICAL REVIEW LETTERS

week ending
13 SEPTEMBER 2013

Transport of a Bose Gas in 1D Disordered Lattices at the Fluid-Insulator Transition

Luca Tanzi, Eleonora Lucioni, Saptarishi Chaudhuri, Lorenzo Gori, Avinash Kumar, Chiara D’Errico,
Massimo Inguscio, and Giovanni Modugno

LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, and CNR-INO 50019 Sesto Fiorentino, Italy
(Received 14 July 2013; published 9 September 2013)

We investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical
lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a
disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a
contribution of quantum phase slips to the dissipation. We identify a set of critical disorder and interaction
strengths for which such critical momentum vanishes, separating a fluid regime from an insulating one.
We relate our observation to the predicted zero-temperature superfluid-Bose glass transition.
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The transport in low-dimensional superfluids and super-
conductors is strongly affected by the presence of disorder,
isolated defects, or even a periodic lattice. The superflow
tends to become unstable for increasing velocities and
decay via phase-slip nucleation, a mechanism that is par-
ticularly strong in 1D because of the large quantum and
thermal fluctuations [1]. This mechanism is relevant for
different systems, such as superfluid He in porous materials
[2-4], superconducting nanowires [5-9], or ultracold
atoms [10-15].

In particular, disorder has been identified as the main
source of dissipation in superconductors and superfluid He.
By employing strongly disordered nanowires close to the
superconductor-insulator transition, some degree of con-
trol of the quantum phase-slip nucleation rate was demon-
strated [9], and models of dissipation due to disorder have
been developed [7,16]. A good control of the disorder is
now available in ultracold atom systems. Experiments are
starting to address the open questions about the superfluid-
Bose glass transition [17-21] and have studied the effect of
a controlled disorder on the transport of 3D Bose-Einstein
condensates [22,23]. A study of the momentum- and
disorder-dependent transport in the strongly fluctuating
1D environment is, however, still missing.

In this work we experimentally address this problem
with 1D ultracold atomic bosons in quasiperiodic lattices,
which allow us to simulate a controllable disorder and
tunable interaction. We start our investigation from the
limit of nondisordered lattices, where suitable theoretical
models for phase slips are available. By exciting a motion
with variable momentum p in systems with relatively large
density, we observe a rather sharp transition from a weakly
dissipative regime at low p to a strongly unstable one at
large p, in contrast to what was observed in low-density
systems [13,14]. Measurements of the momentum- and
interaction-dependent dissipation suggest a relevant role
of quantum phase slips. We then find that a weak disorder
tends to increase the dissipation and reduce the critical
momentum p,. for the instability. We observe that for a
given interaction strength there is a critical disorder
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strength above which p_. vanishes, which indicates the
crossover into an insulating regime. From a set of different
measurements we find a crossover line in the interaction-
disorder plane that is compatible with theoretical estimates
for the superfluid-Bose glass transition at 7 = 0 [24-27].

In the experiment we employ an ensemble of 1D
quasicondensates of 3°K atoms with tunable repulsive in-
teraction [28], moving in a harmonic trap in the presence of
a quasiperiodic lattice [29]. The system is realized by
splitting a 3D Bose-Einstein condensate into a few hun-
dreds of 1D quasicondensates with a deep 2D lattice in the
horizontal plane. Each subsystem contains on average 50
atoms and has longitudinal (transverse) trapping frequency
w, =27 X 150 Hz (w; = 27 X 50 kHz). Along the lon-
gitudinal direction, a quasiperiodic lattice is created by
superimposing two laser standing waves with incommen-
surate wavelengths (A; = 1064 nm, A, = 859 nm). The
first lattice is stronger and sets the tunneling energy
J = h X 150 Hz, while the weaker secondary lattice sets
the amplitude A of the diagonal disorder [30]. For A > 2J
all single-particle eigenstates of the first lattice band are
exponentially localized as in a truly disordered system
[31,32]. The Bose-Hubbard interaction energy U can be
varied in the range (0.3-10)J by adjusting the atomic
scattering length at a Feshbach resonance [33]. The mean
atom number per site n, which scales approximately as
U~'/3, varies in the range of 2 to 4. From the width of the
momentum distribution of the weakly interacting quasi-
condensates, we estimate an upper limit for the equilibrium
temperature of k7T = 6J [34].

To study the transport, the trap center along the vertical
direction is suddenly displaced by a small amount z, =
3.9(2) wm by switching off a magnetic-field gradient. In
the absence of any dissipation, the atoms would oscillate
with a frequency w* = w_m/m* =27 X 90 Hz, where
m* = 2.8m is the atomic effective mass in the lattice. After
a variable waiting time, all potentials are suddenly
switched off and the momentum distribution p(p) is
recorded after a free expansion.
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We started our investigation with nondisordered lattices,
i.e., A =0, where theoretical models are available. A
typical observation of the evolution of p(p) is shown in
Fig. 1 and compared to the solution of the semiclassical
equations of motion [34]. At short times, the displacement
of the peak momentum p, can be approximated with a
damped oscillation py(f) = m*w*?zy/ ' sin(w't)e 7,
where 0’ = J0*> — y*? and y* = ym/m*, with a damp-
ing rate y = 277 X (20-300) Hz. At longer times, as p
increases towards the center of the Brillouin zone (p =
h/2A,), we observe a sudden increase of y. This causes a
stopping of the increase of p, followed by a decay towards
zero which can again be fit with a constant damping rate of
the order of 1 kHz. A corresponding change of behavior
is shown by the width of p(p) (see the inset of Fig. 1),
which stays constant until p, increases, indicating a neg-
ligible heating of the system, while it rapidly increases at
the instability point.
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FIG. 1 (color online). Transport in nondisordered lattices.
(a) Time evolution of the peak momentum for U = 1.26J and
n = 3.6. The experimental data (dots) are fitted at short times
with a damped oscillation with y/27 = 135(10) Hz (continuous
line) and at later times with y'/27 = 600(50) Hz (dashed line).
The dash-dotted line is the expected oscillation in the absence of
damping. (b) The difference between the fit to the initial damped
motion and the experimental data (dots) is fitted (continuous
line) to estimate the critical momentum. The inset shows p(p) at
three different times: ¢t = 0, t = 0.8 ms, t = 3.5 ms, from top to
bottom. The error bars represent the squared sum of statistical
and systematic uncertainties.

This observation is in qualitative agreement with theo-
retical models [12,35-38] predicting two different regimes
of quantum and thermal phase slips, in two different tem-
perature regimes separated by a crossover temperature
kgTy = c/nJU, where c is a velocity-dependent factor
smaller than unity [12,34,38]. For T < T,, quantum phase
slips dominate, with an exponential scaling of the nucleation
rate with the interaction energy, density, and momentum as
Iy < exp[—7.1§nJ/U(w/2 — pA,/20)/?]. For T > T,,
thermal activation of phase slips dominates, with a rate I'; «
exp[—4nJ/3kpT(m/2 — pA,/2h)*] [35]. In the framework
of these models, the weak dependence of y on p observed in
previous experiments with low-density (n = 1) 1D bosons in
lattices [13,14] was justified by the small prefactor in the
exponential scaling with p. Similarly, the smaller initial y
observed in our experiment can be attributed mainly to the
fraction of the system with lower density. Our 7y are indeed
comparable to those of a previous experiment [13]. We
actually observe an asymmetry in p(p) that supports the
idea of an inhomogeneous damping (inset of Fig. 1). The
sudden instability is instead presumably due to the higher-n
fraction, for which the theoretical expressions above predict
a fast exponential increase of y with p. Numerical calcu-
lations indicate that in a trap such instability should not be
affected by the low-n component [12].

We estimate a critical momentum p, separating the
initial regime of weaker dissipation from the strongly
unstable regime, by linearly fitting the difference between
the experiment and the fit of the initial oscillation, as
shown in Fig. 1(b). The measured p. features a clear
decrease when increasing U at constant J, while vy
increases, as shown in Fig. 2. Eventually, p. approaches
zero as U approaches the predicted critical value for the
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FIG. 2 (color online). Critical momentum for nondisordered
lattices (dots) versus the interaction energy. The continuous line
is a linear fit, the arrow marks the critical U/J for the superfluid-
Mott insulator transition for n = 2, and the dashed line is the
estimated p, from the quantum phase-slips model. Inset: Initial
damping rate 7.
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Mott insulator (U,/J = 2 X 2.674 for the calculated mean
occupation n = 2 [39]). Actually, even deep into the insu-
lating regime we observe a small but finite p, of the order
of the inverse size of the system, as already observed [14].
By a piecewise fit of the data, we obtain a critical interac-
tion that is comparable to theory: U,/J = 5.9(2)(4), where
the uncertainties are statistical and systematic, respectively.
These observations lead to the conclusion that also in 1D
the onset of the Mott regime can be detected from a vanish-
ing of p,., as in 3D systems [14]. In 1D the transport is,
however, clearly dissipative also for p < p,, as expected.

The decrease of p. and the corresponding increase of y
with U suggest a quantum activation of phase slip, since
only I', has a direct dependence on U in the exponential.
Since phase-slips models for y in our large p and inhomo-
geneous n are not available, we tentatively compare our
data to the complete expressions for I'y [37] and 'y [35]
regimes. In the spirit of Ref. [35], we estimate p. by
imposing that the nucleation rate gets larger than the experi-
mental damping rate (= 277 X 1 kHz). An unknown pre-
factor in the calculations is adjusted to match a single
experimental datum at U/J = 4.5. The quantum phase-
slip model predictions are in relatively good agreement
with the experiment, as shown in Fig. 2. A similar analysis
with the thermal model predicts instead an essentially
constant p, at constant 7 (see [34] for more discussion).
We note that this result is not fully supported by the esti-
mated 7 somewhat above T, although it is of the same order
of magnitude; a careful verification of the role of quantum
and thermal phase slips is left to future studies.

Let us now turn to the transport in the presence of
disorder. We have, in particular, studied the weakly inter-
acting regime, U/J < 3, where p, for the nondisordered
lattice can be very precisely measured. The experiment is
performed as before, except for a finite A that is introduced
together with the main lattice. Figure 3 shows how a small
A results in a moderate increase of vy, but also in an
anticipated instability. Both changes can be related to the
idea that transport in disorder is dominated by the weakest
hopping links, resulting in a smaller effective J(A) that in
turn produces an increase of the phase-slip nucleation rates
above, due to their exponential dependence on J [34]. A
related phase-slip model developed for disordered super-
conductors indicates, indeed, a nucleation rate scaling
exponentially with A [7], but it was derived in a different
range of parameters and cannot be applied directly to our
system. An important observation shown in Fig. 4 is that,
for a fixed U, p. features a clear decreasing trend for
increasing A. Above a critical disorder strength A. of the
order of the total interaction energy per atom nU, p, stops
decreasing and stays constant at a small value close to that
observed in the Mott-insulator regime. This is actually the
regime where a weakly interacting Bose glass is predicted
to appear, since the disorder can overcome the delocaliza-
tion effect of the interaction [24,25]. The data in Fig. 4
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FIG. 3 (color online). Transport in disordered lattices. Time
evolution of the peak momentum for U = 1.26J for A/J =0
(dots), A/J = 3.6 (triangles), and A/J = 10 (squares). The lines
are fits of the semiclassical motion to the initial oscillation.
The fitted damping rates are /27 = 130(10) Hz, y/27 =
250(30) Hz, and /27 = 1.1(6) kHz, respectively.

show also that the decrease of p. is accompanied by an
increase of the rms momentum width §p at equilibrium
(i.e., at ¢+ = 0), which is essentially the inverse of the
correlation length £, towards a saturation value. §p starts
to increase well before p,. has reached its minimum, indi-
cating that the vanishing of p. signals the onset of a
strongly insulating phase, with a correlation length & =~ d.
Note that the observed p-dependent dynamics suggests that
a simpler method with a fixed observation time, used in
strongly interacting disordered systems [20], might under-
estimate the critical disorder strength for the insulating
regime.

Motivated by the possibility of discriminating the fluid
regime from the insulating one, we have studied how A,
evolves with U. For each U, we estimated A, with a
piecewise fit of the decreasing p.(A), as shown in Fig. 4.
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FIG. 4 (color online). Critical momentum p, (full circles) and
initial rms momentum width 8p (open circles) for a fixed
interaction energy (U/J = 1.26) and increasing disorder
strength. A linear fit (continuous line) is used to estimate A,
while the dashed line is a sigmoidal fit of §p.
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FIG. 5 (color online). Critical disorder to enter the insulating
phase versus interaction energy. The experimental data from the
critical momentum (dots) are fitted with the model described in
the text (line). The uncertainty is dominated by a 20% error on
the calibration of A [34].

The summary of these measurements in Fig. 5 shows a
clear increase of A, with U, indicating that the critical
momentum of more strongly interacting systems is less
affected by the disorder. The increase of A is actually fully
justified, since the critical disorder strength to enter the
Bose glass phase from the superfluid in the regime of weak
interactions is expected to scale as A./J = A(Ei,/J)?%,
where E;,; =~ nU is the total interaction energy per atom,
while A and « are coefficients of the order of unity [24-26].
In the absence of an analytical model for the superfluid-Bose
glass transition in a quasiperiodic lattice, we fit the experi-
mental data with (A, — 2)/J = A(nU/J)“ to account for
the critical A/J =~ 2 for localization in the noninteracting
system. This choice is supported by the results of the density
matrix renormalization group study in [27]. The fit gives an
exponent @ = 0.86(22) and a coefficient A = 1.3(4). In the
fit we excluded the data point for A/J < 2, which should be
described by a different mechanism of competition between
the miniband structure of the quasiperiodic lattice and the
interaction energy [22].

The exponent is compatible with the mean-field theory
prediction & = 1 for correlated Gaussian disorder in the
so-called Thomas-Fermi regime, where E;, is larger than
the typical disorder correlation energy E. [25]. For the
quasiperiodic lattice we estimate indeed an upper bound
E./J = 0.7 [34]. The observation is, however, not incom-
patible with the prediction @ = a(U) < 1 found in disor-
der models that include corrections beyond the mean field
[26]. We obtain a comparable exponent, although with a
different prefactor A, from a similar analysis of the cross-
over in dp, also in agreement with previous experiments
for very small U [19]. It is interesting to note that many
current models for the superfluid-Bose glass transition at
T = 0 are essentially based on the evolution of the same
phase-slip nucleation rate that seems to be responsible for

the dynamics observed in the present work [40—42]. A careful
assessment of finite-size and finite-T' effects is, however,
required to establish the relation between the observed
critical line and the theoretical fluid-insulator transition.

In conclusion, we have studied the momentum-
dependent transport of 1D disordered bosons. We have
employed the vanishing of the critical momentum for the
observed instability to locate the fluid-insulator transition
driven by disorder, across the interaction-disorder plane.
The present study was for weak interactions and fixed
equilibrium temperature. Future work should explore the
role of temperature, also in connection with models for the
many-body localization [43], and try to establish a link
with the Luttinger-liquid theory for the superfluid-Bose
glass transition for generic U and A [17,18,40-42].
In this context, the extension of the techniques used here
to smaller momenta might allow us to probe the predicted
universal scalings in lattices [37,38] and in disorder [7].
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