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1Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics, 01062 Dresden, Germany
2Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
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In open chaotic systems the number of long-lived resonance states obeys a fractal Weyl law, which

depends on the fractal dimension of the chaotic saddle. We study the generic case of a mixed phase space

with regular and chaotic dynamics. We find a hierarchy of fractal Weyl laws, one for each region of the

hierarchical decomposition of the chaotic phase-space component. This is based on our observation of

hierarchical resonance states localizing on these regions. Numerically this is verified for the standard map

and a hierarchical model system.

DOI: 10.1103/PhysRevLett.111.114102 PACS numbers: 05.45.Mt, 03.65.Sq, 05.45.Df

It is just a century ago that Hermann Weyl published his
celebrated theorem on the asymptotic distribution of eigen-
modes of the Helmholtz equation in a bounded domain [1]
which has found fundamental applications in the context
of acoustics, optical cavities, and quantum billiards [2–4].
For a quantum billiard with a d-dimensional phase space
the number N ðkÞ of eigenmodes with a wave number
below k is on average and in the limit of large k given by

N ðkÞ � kd=2 up to corrections of higher order [5–9]. Only
recently, this fundamental question has been addressed for
open scattering systems, where for the case of fully chaotic
systems, a fractal Weyl law was found [10–23]. Because of
the opening of the system one classically obtains a fractal
chaotic saddle (sometimes also called repeller), which is
the invariant set of points in phase space that do not escape,
neither in the future nor in the past [24,25]. Its fractal
dimension � plays an important role quantum mechani-
cally: The number N of long-lived resonance states is
given by a fractal Weyl law,

N ðhÞ � h��=2; (1)

which here is stated for open chaotic maps, where the k
dependence is replaced by the dependence on the effective
size of Planck’s cell h.

Generic Hamiltonian systems exhibit a mixed phase
space where regular and chaotic motion coexist [26], see
Fig. 1(a). Regular resonance states of the open system obey
a standard Weyl law, while for chaotic resonance states one
would naively expect that their number follows the fractal
Weyl law, Eq. (1). This ignores, however, that the dynamics
in the chaotic region of generic two-dimensional maps is
dominated by partial transport barriers, see Fig. 1(a). A
partial barrier is a curve which decomposes phase space
into two almost invariant regions. The small area, enclosed
by the partial barrier and its preimage (dotted line in
Fig. 1(a), magnification), consists of two parts of size �
on opposite sides of the partial barrier, which are mapped
to the other side in one iteration of the map. This flux � is
the characteristic property of a partial barrier. There are

infinitely many partial barriers which are hierarchically
organized with decreasing fluxes towards the regular
regions [27–31]. The partial barriers strongly impact the
system’s classical [27–33] and quantum mechanical
[34–44] properties, and lead to, e.g., the localization of
eigenstates in phase space [34–36,40,44] and fractal
conductance fluctuations [37,38,42].

FIG. 1 (color online). (a) Phase space of the standard map at
� ¼ 2:9 with regular (thin solid gray lines) and chaotic (gray
points) orbits, three partial barriers (thick solid colored lines) and
the preimage of the outermost partial barrier (dotted magenta
line). (b) Chaotic saddle of the opened map (gray-shaded absorb-
ing stripes) colored according to the regions (A0: light green, A1:

dark blue). (c) Rescaled hierarchical fractal Weyl laws fN j vs

h�1 (filled symbols) counting hierarchical resonance states in the
outer (A0, triangles) and inner (A1, circles) chaotic regions (with
corresponding typical Husimi representations for h ¼ 1=1000).
Their power-law scaling is compared to the rescaled box-
counting scaling ~Nbc

j vs "�2 (open symbols) with fractal dimen-

sion �j in region Aj of the chaotic saddle.
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Classically, the chaotic saddle, see Fig. 1(b), in generic
two-dimensional open maps gives rise to an individual
fractal dimension for each region of the hierarchical
decomposition of phase space [32]. It is important to stress
that these are effective fractal dimensions, which are con-
stant over several orders, while in the limit of arbitrarily
small scales, they approach two [32,45]. Quantum mechani-
cally, fractal Weyl laws for open systems with a mixed phase
space have been investigated in Refs. [46–49], but the
influence of the hierarchical phase-space structure remains
to be studied. In particular, the individual effective fractal
dimensions of the chaotic saddle have not been taken into
account, so far.

In this Letter we propose a generalization of the Weyl
law to open systems with a mixed phase space. We obtain
hierarchical fractal Weyl laws,

N jðhÞ � h��j=2; (2)

one for each phase-space region Aj of the hierarchical

decomposition of the chaotic component in a generic
two-dimensional phase space. Here, �j denotes the effec-

tive fractal dimension of the chaotic saddle in each region.
Quantum mechanically, this result is based on our obser-
vation of hierarchical resonance states, which predomi-
nantly localize on one of the regions Aj. Their number

N j follows the hierarchical fractal Weyl laws, Eq. (2).

This holds over ranges of h where on the corresponding
classical scale the effective fractal dimension �j is con-

stant. In the semiclassical limit we expect a scaling h�1.
Equation (2) is confirmed for the generic standard map
and a hierarchical model system.

Classical properties.—We first review the classical
properties of the chaotic saddle in a generic mixed system
and illustrate them for the prototypical example of the
Chirikov standard map [50]. It is obtained from the kicked
rotor HamiltonianHðq; p; tÞ ¼ TðpÞ þ VðqÞPn2Z�ðt� nÞ
with kinetic energy TðpÞ ¼ p2=2 and kick potential
VðqÞ ¼ ð�=4�2Þ cosð2�qÞ. At integer times t it leads to
the symmetrized map qtþ1 ¼ qt þ T0ðp�Þ, ptþ1 ¼
p� � V0ðqtþ1Þ=2 with p� ¼ pt � V0ðqtÞ=2 on the torus
½0; 1Þ � ½�1=2; 1=2Þ. We open the system by defining
absorbing stripes of width 0.05 on the left and right, see
Fig. 1(b). This leads to a chaotic saddle �, for which a
finite-time approximation is shown in Fig. 1(b) for � ¼
2:9. The chaotic saddle � of the open system is strongly
structured by the presence of partial barriers. They origi-
nate from Cantori or stable and unstable manifolds of
hyperbolic periodic orbits [31]. Partial barriers provide a
hierarchical treelike decomposition [30] of the chaotic
component of phase space into regions Aj: A typical orbit

explores a region Aj before it enters a neighboring region

Ak. The transition rate is approximately given by the ratio
�=Aj where � is the flux across the partial barrier sepa-

rating Aj and Ak. The route of escape from region Aj to the

opening is determined by the treelike decomposition of

phase space. It traverses the sequence of neighboring
regions connecting Aj with the opening in A0. The escape

rate from a region Aj is dominated by the first transition

rate, as subsequent transition rates are much larger.
Figure 1(a) shows the outermost partial barrier separating
the largest two regions A0 and A1 (which are quantum
mechanically accessible), as well as its preimage illustrat-
ing its flux �. In addition, one can see the two partial
barriers separating region A1 from the chaotic region near
the central island and near the period-four regular island
chain. All three partial barriers are constructed from stable
and unstable manifolds of a period 4 and a period 28 orbit.
Using the box-counting method [51] one can associate a

fractal dimension �j with the intersection � \ Aj of the

chaotic saddle � with each of the regions Aj. The number

Nbc
j ð"Þ of occupied boxes of side length " scales like

Nbc
j ð"Þ � "��j , see Fig. 1(c), with �0 ¼ 1:68 and �1 ¼

1:86. To emphasize the difference between such dimensions
close to two, the ordinate is rescaled by "2, yielding the
rescaled counting function ~Nbc

j ð"Þ ¼ "2Nbc
j ð"Þ. The

increase of �j towards two when going deeper into

the hierarchy can be qualitatively understood by adapting
the Kantz–Grassberger relation [52] from fully chaotic
systems.
Hierarchical resonance states.—We now present the

essential quantum effect that resonance states localize pre-
dominantly on one of the regions Aj. The closed quantum

system is described by the time-evolution operator U ¼
expf�ði=2@ ÞVðqÞg expf�ði=@ÞT ðpÞg expf�ði=2@ÞV ðqÞ g.
The corresponding open quantum system is given by
Uopen ¼ PUP, where P is a projector on all positions not

in the absorbing regions. The resonance states c are given
by Uopenc ¼ exp½�ið’� i�=2Þ�c . Regular resonance

states are predominantly located in the regular region.
Chaotic resonance states are predominantly located in either
of the hierarchical regions Aj, see Fig. 1(c). Hence, we will

call them hierarchical resonance states (of regionAj). Such a

localization of chaotic eigenstates on different sides of a
partial barrier is well known for closed quantum systems
[27,36,44]. Chaotic eigenstates localized in the hierarchical
region of a mixed phase space were termed hierarchical
states [40]. They require that the classical flux � across a
partial barrier is small compared to the size h of a Planck
cell, i.e.,� � h. In the opposite case, eigenstates would be
equidistributed ignoring the partial barrier [27,36,44]. Quite
surprisingly, in open quantum systems we find that this
condition from closed systems is irrelevant for hierarchical
resonance states. In the standard map at � ¼ 2:9 we have
� � 1=80, and for h ¼ 1=1000, such that the condition
� � h is violated, typical resonance states still predomi-
nantly localize in one of the regionsAj, as shown in Fig. 1(c).

This is still the case forh ¼ 1=12 800, see Fig. 2. This crucial
phenomenon for our study highlights the strong impact of
the opening.
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One can qualitatively understand this localization of
hierarchical resonance states in the following way: The
localization on an almost invariant region Aj seems plau-

sible in view of the semiclassical eigenfunction hypothesis
for invariant regions [53–55]. However, eigenstates localized
on neighboring regions hybridize, if their coupling due to the
flux� is larger than their energy spacing. In closed systems
this happens for�> h [27,36,44]. In open systems, though,
the distance of resonance energies in the complex plane is
larger due to their imaginary part. In fact, it ismuch larger due
to the different decay rates of resonance states of neighboring
regions Aj corresponding to their different classical escape

rates. Therefore the localization of resonance states on
regions Aj is possible in open systems, even if the criterion

for the closed system,� � h, is not fulfilled. Such a line of
reasoning is reminiscent of the considerations on resonance
trapping in fully chaotic systems [56–58]. This impact of the
opening will be studied quantitatively in the future.

For the present study it is sufficient to observe that the
great majority of chaotic resonance states is predominantly
located in one of the regions Aj, allowing their classifica-

tion. Numerically, we use their relative local Husimi
weight in Aj (in the case of A0 excluding the area of the

opening) and discard states with more than 50% Husimi
weight in the regular region and the deep hierarchical
region (Aj, j � 2). This classification is supported by the

distribution of the decay rates � of the corresponding
resonance states, see Fig. 2. States which are located
deeper in the hierarchy have smaller decay rates. In fact,
the two distributions for regions A0 and A1 have a small
overlap, only. Note that an alternative classification of
resonance states purely based on their decay rates �, would
fail deeper in the hierarchy, as the treelike structure allows
for different regions Aj having strongly overlapping decay

rate distributions.

Hierarchical fractal Weyl laws.—For each region Aj of

the hierarchical phase space we now relate the numberN j

of hierarchical resonance states of that region to the fractal
dimension �j of the chaotic saddle in that region. To this

end we use the fractal Weyl law of fully chaotic systems
[12,13], Eq. (1), individually for each region Aj. This gives

our main result that in open systems with a mixed phase
space one obtains a hierarchy of fractal Weyl laws, one for
each phase-space region Aj, Eq. (2). We stress that this

result is based on the surprising existence of hierarchical
resonance states. Note that as a consequence of Eq. (2) the
total number of long-lived hierarchical resonance states is
a superposition of power laws with different exponents
and not a single power law.
To give an intuitive understanding of the hierarchical

fractal Weyl laws, let us recall the interpretation of the
fractal Weyl law [12], and apply it in the presence of a
hierarchical phase space. The number of quantum states
localizing on a particular phase-space region is given by
the number of Planck cells necessary to cover the chaotic
saddle in that region. Using the scaling, Nbc

j ð"Þ � "��j , of

the number of boxes Nbc
j to cover the chaotic saddle in

region Aj and the identification of the box area "2 with the

Planck cell area h directly leads to Eq. (2). This holds for
values of h not too small, such that on the corresponding
classical scale the effective fractal dimension �j still

remains constant. Asymptotically (" ! 0), all �j approach

two [32,45]. Therefore, in the semiclassical limit (h ! 0),
we expect an individual resonance state to extend over all
regions Aj and that their number scales as h�1.

Standard map.—The numerical investigation of the
standard map supports the existence of hierarchical fractal
Weyl laws, as we now show. By the classification of
resonance states we are able to determine the number
N jðhÞ of long-lived hierarchical resonance states associ-

ated with a particular region Aj depending on h. We restrict

ourselves to the consideration of small h such that �=h *
10 where quantum mechanics can very well mimic classi-
cal transport in phase space [44]. Short-lived states are
discarded by defining an arbitrary cutoff rate �c ¼ 1,
as usual for the fractal Weyl law [13]. In globally chaotic
systems the particular choice of �c (within a reasonable
range) does not influence the power-law exponent of the
fractal Weyl law but its prefactor only [14]. Here this
merely affects resonance states of the outermost region
A0. We obtain distinct behavior for each rescaled counting

function fN jðhÞ ¼ fjhN jðhÞ, see Fig. 1(c), correspond-

ing to the previous classical rescaling. We fitted prefactors
fj to the quantum results to better demonstrate their scaling

with power laws in agreement with the classical counter-
parts (both prefactors fj are of order one: f0 ¼ 2:6,

f1 ¼ 0:85). Apart from the smallest values of 1=h, one
observes the power-law scaling of Eq. (2) and good agree-
ment with the box-counting results for the fractal dimensions

FIG. 2 (color online). Distributions Pð�Þ of decay rates � for
hierarchical resonance states of the standard map at � ¼ 2:9
located in regions A0 (right, yellow) and A1 (left, red) for 1=h ¼
12800 and corresponding Husimi representations of typical
states. Short-lived states (� > �c) are not counted in the fractal
Weyl law.
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�j of� \ Aj. Note that the deviations between corresponding

classical and quantum power-law exponents are much
smaller than the differences between the exponents associ-
ated with different regions Aj of the hierarchy. Figure 1(c)

confirms for two regionsAj of the standardmap that they give

rise to hierarchical fractal Weyl laws. Note that the shape
and position of the absorbing region modifies the fractal
dimension of the chaotic saddle and the power-law exponent
of the fractal Weyl law, but their relation remains valid
(not shown).

Hierarchical model system.—To verify the hierarchical
fractal Weyl laws for more than two regions, we suggest
the following system that models the hierarchical structure
of partial barriers in a generic mixed phase space, similar in
spirit to a one-dimensional model [32] and a Markov chain
[29]. The numerics for the corresponding quantum model
allows for studying three regions.

We first define a composed symplectic map C 	M on
the phase space ½0; 1Þ � ½0; 1Þ. It models b partial barriers
at the positions q1 < 
 
 
< qb as straight lines in the p
direction, giving a decomposition into bþ 1 regions
Aj ¼ ½qj; qjþ1Þ � ½0; 1Þ with q0 ¼ 0 and qbþ1 ¼ 1. The

map M describes the uncoupled dynamics being suffi-
ciently mixing in each region Aj. We choose the standard

map at kicking strength � ¼ 10 acting individually on each
of the regions Aj after appropriate rescaling. The map C

couples these regions mimicking the turnstile mechanism
of a partial barrier with flux �j by exchanging the

areas ½qj ��j; qjÞ � ½0; 1Þ with their neighboring areas

½qj; qj þ�jÞ � ½0; 1Þ. Finally, we open the system by

defining the absorbing region ½0;�0Þ � ½0; 1Þ. Here, we
use b ¼ 2, q1 ¼ 4=7, q2 ¼ 6=7, �0 ¼ 1=7, �1 ¼ 1=28,
and �2 ¼ 1=112.
Figure 3 shows the results for the hierarchical model

system: We obtain the fractal dimensions �0 ¼ 1:69,
�1 ¼ 1:94, and �2 ¼ 1:99. Quantum mechanically, we
again find hierarchical resonance states predominantly
localizing on one of the regions Aj, even though

h � �1,�2. Their number follows the proposed hierarch-
ical fractal Weyl laws according to Eq. (2). For the rescaled

numbers fN j in Fig. 3 we use prefactors f0 ¼ 1:75,

f1 ¼ 1:55, and f2 ¼ 0:8, which are of order one.
An experimental verification of the hierarchical fractal

Weyl laws should be feasible using microwave cavities as
in a recent study on chaotic resonance states [59]. A future
challenge is the study of fractal Weyl laws in higher
dimensional systems with a generic phase space.
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