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We show that a slightly modified Breit-Wigner formula can successfully describe the total cross section

even for the broad resonances, from the light �ð770Þ to the heavy Z boson. In addition to the mass, width,

and branching fraction, we include another resonance parameter that turns out to be directly related to the

pole residue phase. The new formula has two mathematically equivalent forms: one with the pole and the

other with the Breit-Wigner parameters.
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Resonances are unstable particles usually observed as
bell-shaped structures in scattering cross sections of their
decay products. For a simple narrow resonance, its funda-
mental properties correspond to the visible cross-section
features: massM is at the peak position, and decay width �
is the width of the bell shape. These parameters, along with
the branching fraction x, are known as the Breit-Wigner
(BW) parameters [1]. In reality, resonance peaks may be
very broad, and the shape so deformed that it is not at all
clear where exactly the mass is, or what would be the width
of that resonance. In such cases, resonance parameters are
treated as energy dependent functions. These functions are
often defined differently for different resonances. For ex-
ample, in the case of the �ð770Þ resonance in the ��
channel, modern analyses include the pion-pion P-wave
potential barrier (momentum to three halves) in the energy
dependent width [2], while in the case of the Z boson the
width function is proportional to the energy squared [3].

With such model dependent parametrizations, the sim-
ple connection between the physical properties of a reso-
nance and its model parameters is lost, and the choice
of the ‘‘proper’’ resonance parameters becomes a matter
of preference. There are many definitions for the Breit-
Wigner mass, which is assumed by some to be the proper
resonance physical property. Others will prefer the real part
of the pole position in the complex energy plane. Somewill
even define the resonance mass to be something unrelated
to these two most common definitions, as we will soon see,
or assume that there is no difference between the poles and
Breit-Wigner parameters whatsoever. All that makes the
comparison between the cited resonance parameters quite
confusing and potentially hinders the direct comparison
between microscopic theoretical predictions (such as in
[4]) and experimentally obtained resonance properties [5].

To clarify this situation we try to devise a simple model-
independent formula for resonant scattering, with well-
defined resonance physical properties, which will be
capable of successfully fitting the realistic data for broad
resonances.

In this Letter, we show how to dramatically improve the
simple Breit-Wigner formula by incorporating just one

additional (phase) parameter in it. This new formula has
two equivalent forms that can be used to estimate either the
pole or Breit-Wigner parameters in a model-independent
way.
We begin our analysis by noting that the resonant cross

section is commonly parametrized by a simple Breit-
Wigner formula [1]

� ¼ 4�

q2
2J þ 1

ð2s1 þ 1Þð2s2 þ 1Þ jAj
2; (1)

where q is a c.m. momentum, J is the spin of the resonance,
while s1 and s2 are spins of the two incoming particles. The
resonant scattering amplitude A is given by

A ¼ x�=2

M�W � i�=2
; (2)

whereM is the resonant mass, � is the total decay width, x
is the branching fraction to a particular channel (for inelas-
tic scattering it is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xinxout

p
), and W is the c.m. energy.

This simple parametrization cannot describe most of the
realistic cross sections since the resonance shapes are sel-
dom symmetric. To fix this, a background contribution is
usually added. Unfortunately, there is no standard way to
add background, but polynomials inW2 (i.e.,Mandelstam s)
are commonly used in the literature (see, e.g., [6])

jAj2 ! jAj2 þ Xn
k¼0

BkW
2k: (3)

To extract the resonance parameters, we do local fits
(in energy) of this parametrization to a broad range of data
points in the vicinity of the resonance peak. To estimate the
proper order n of the polynomial background, we vary the
endpoints of the data range and check the convergence of
the physical fit parameters: M, �, and x. The goodness of
the convergence is estimated by calculating cn;l parameters

for each data range and for all polynomial orders n and l

cn;l ¼
X

y¼m;�;x

ðyl � ynÞ2=y2n: (4)

Smaller cn;l means better convergence.
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To avoid false positive convergence signals as much
as possible, we demand good convergence not just for
two, but also for three consecutive polynomial orders by
using

cn ¼ cn;nþ1 þ cn;nþ2: (5)

The final result is the one that has the smallest reduced �2
R

among several fits (we use ten) with lowest convergence
parameters cn. When statistical errors turn out to be unre-
alistically small due to the data set issues, the spread in the
extracted pole parameter values is used to estimate pa-
rameters errors.

To test this extraction approach, we analyze five broad
resonances with well-known properties, and masses rang-
ing from less then 1 GeV to almost 100 GeV. For �ð1232Þ
and Nð1440Þ, we analyze the George Washington
University [7]�N elastic partial-wave amplitudes squared.
For �ð770Þ and Z boson we analyze the eþe� scattering
ratio R (between hadronic and muonic channels) from the
PDG compilation [5], and for �ð11020Þ the new BABAR
data [8].

Using the Breit-Wigner parametrization, Eq. (2), on
broad resonances does not produce very good results.
Therefore, in the advanced approaches, the resonance
width � (and other parameters) is considered to be energy
dependent, which drastically improves the fit. However,
parametrization then becomes model dependent, obfuscat-
ing the connection between the model parameters and
physical properties of the resonance. We want to find a
simple model-independent form, as close to the original
Breit-Wigner parametrization as possible, that will be
capable of successfully fitting the realistic data for broad
resonances. To do so, we assume that the numerator and the
denominator in relation (2) are functions of energy, expand
them, and keep only the linear terms. The amplitude A
becomes

A ¼ xp�p=2 e
i�p

Mp �W � i�p=2
þ jABjei�B ; (6)

which turns out to be the lowest order Laurent expansion of
amplitude A about its pole position at W ¼ Mp � i�p=2.

Therefore, Mp and �p are the pole mass and width, while

xp�p=2 and �p are the complex residue magnitude and

phase, respectively. (Note that we use the standard con-
vention for the residue phase �p, as used in PDG [5], which

differs from the mathematical residue phase by��.) Three
additional fit parameters are the residue phase �p, the

(coherently added) background magnitude jABj, and the
background phase �B. We can extract only the relative
phase �p ¼ �p � �B, since the absolute square of this

amplitude will be compared to the data. In order to ease
the numerical analysis, we rewrite the new parametrization
in a compact form

jAj2 ¼ jABj2 ð��WÞ2 þ �2

ðMp �WÞ2 þ �2
p=4

; (7)

where � and � are simple fit parameters related to the pole
parameters through

xp sin�p ¼ jABj
�p=2� j�j

�p=2
; (8)

xp cos�p ¼ �jABj
Mp ��

�p=2
: (9)

Using Eq. (7), we should be able to extract the pole
mass, width, branching fraction, the magnitude of the
background amplitude, and the relative phase from the
data. We again use the same polynomial background
from relation (3) and convergence criteria from relations
(4) and (5). However, at the very beginning of this analysis
we stumbled upon a problem with our fits. When we fitted
the �ð1232Þ resonance, parameter � was rather unstable,
ranging from zero to several thousand MeV. In addition,
fits often did not converge, even for carefully chosen initial
values.
We looked into it more closely and realized that since

�ð1232Þ is almost an elastic resonance (decaying by more
than 99% to the �N channel), � should be zero due to the
elastic two-body unitarity condition AyA ¼ ImA. When �
was set to zero, everything worked almost perfectly. It is
important to note that xp should be 1 for elastic resonances,

again due to the unitarity, but setting � to zero does not
imply that xp is 1.

Things became really interesting when we tried to
extract Z boson parameters from eþe� scattering data.
The unstable � behavior seen in the case of �ð1232Þ was
observed again, even though the Z boson is definitely not
an elastic resonance. The fit could not be stabilized, and
eventually we tried � ¼ 0 again (xp still can take care of

inelasticity). This choice smoothed the fitting procedure,
and the extracted resonance parameters were in excellent
agreement with the PDG (pole) estimates [5]. Assuming
that � ¼ 0 for other processes, we rewrite the amplitude
defined in Eq. (6) as

A ¼ xpe
i	

�
�p=2 e

2i�p

Mp �W � i�p=2
þ ei�p sin�p

�
; (10)

with the unmeasurable overall phase 	 equal to 2�B � �p.

The square of this amplitude is then

jAj2 ¼ x2p
½ðMp �WÞ sin�p þ �p=2 cos�p�2

ðMp �WÞ2 þ �2
p=4

: (11)

We know that for �ð1232Þ, the overall phase 	 is zero
due to unitarity, which means that �B ¼ �p and �p ¼ 2�p.

We compare our results for 2�p to published results of �p
for other analyzed resonances to check whether the same
relation is valid for them as well. The Roper resonance
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Nð1440Þ is the �N resonance with the �N branching
fraction x estimated to 65%, and the 2�p value of �81�

is surprisingly close to the newest residue phase estimate
�85� from [5]. For the Z boson, these two values are even
closer: 2�p is �2:2�, while �p is �2:35�. The extracted

masses and widths are much closer to the pole parameters
listed in the literature than to the Breit-Wigner ones, as can
be seen in Table I. The best fits for all analyzed resonances
are shown in Figs. 1–5.

The new pole parametrization, Eq. (10), may be used
instead of Eq. (2), since it works much better and adds only
one quite important parameter �p. This parameter is the

main ingredient of the shape of the resonance contribution
to the cross section. When �p is equal to zero, the new pole

and the old simple Breit-Wigner parametrization are
exactly the same.

We began this study in the first place to find an improved
Breit-Wigner parametrization, but ended up with a pole
parametrization instead. We followed the original notion of
Breit and Wigner, that the resonance mass is at the peak
position [1], and noted the convenient form of our pole
parametrization, Eq. (10), that looks very similar to a
single-channel elastic amplitude (apart from xp � 1 and

	 � 0). We now define the new Breit-Wigner parameters
as a single-channel K-matrix pole Mb, residue �b, branch-
ing fraction xb, and background phase �b,

K ¼ �b=2

Mb �W
þ tan�b; (12)

A ¼ xb
K

1� iK
; (13)

jAj2 ¼ x2b
ð�b=2þ tan�bÞ2

ðMb �WÞ2 þ ð�b=2þ tan�bÞ2
: (14)
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FIG. 1. Fitting pole parametrization, Eq. (11), to the data [5].
The pole and BW masses have almost the same value, which is
quite different from PDG estimate (dotted line). [We removed
the data from the peak to eliminate the influence of the !ð782Þ
resonance.]
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FIG. 2. Fitting pole parametrization, Eq. (11), to the SAID data
[7]. Pole (solid line) and BW mass (dashed line) are clearly
distinct, while the PDG estimates (dotted lines) are indistin-
guishable from them. All the data in this figure are analyzed, but
only the black data points are used in the best fit.

TABLE I. Resonance pole parameters extracted by using the
pole formula, Eq. (11). Our 2�p is compared to the residue phase

�p from the literature. The PDG pole estimates are from Ref. [5].

The � meson pole and the Z boson residue phase are estimated
by an analytic continuation of the Gounaris-Sakurai [2] and
Breit-Wigner [5] parametrizations, respectively.

Resonance Mp=MeV �p=MeV xp=% 2�p=
�

�ð770Þ 762� 1 138� 2 0.71 1� 1
Pole 763 144 � � � � � �
�ð1232Þ 1211� 1 102� 1 103� 1 �47� 1
PDG pole 1210� 1 100� 2 104� 2 �47� 1
Nð1440Þ 1362� 5 191� 10 61� 4 �81� 10
PDG pole 1365� 15 190� 30 65� 10 �85�15

10

�ð11020Þ 11 000� 2 43� 6 0.10 �52� 8
BABAR [8] 10 996� 2 37� 3 � � � � � �
Zð91188Þ 91 167� 6 2493� 5 15.4 �2:2� 0:2
PDG pole 91 162� 2 2494� 2 � � � �2:35
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FIG. 3. Fitting pole parametrization, Eq. (11), to the SAID data
[7]. This resonance has the largest difference between pole and
BW mass. PDG estimates (dotted lines) are consistent with pole
(solid line) and BW (dashed line) parameters.
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In this form, xb and �b will be mathematically equal
to xp and �p, respectively. When we fit parametrization,

Eq. (14), to the data, extracted fit parameters Mb, �b, and
xb are consistent with Breit-Wigner parameters from PDG
[5], as is clearly visible from Table II. As expected, xb and
�b have almost exactly equal values as their pole counter-
parts xp and �p in Table I. Furthermore, the extracted pole

and Breit-Wigner parameters are interrelated through
Manley relations [9]

Mb ¼ Mp � �p=2 tan�p; (15)

�b ¼ �p=cos
2�p: (16)

These Breit-Wigner parameters are uniquely defined and
model independent, with a directly observable mass as the
peak of the squared amplitude jAj2. However, they strongly
depend on phase �p, which may change from reaction to

reaction. That means that for the same pole position, there
will be different Breit-Wigner masses and widths in

different channels. Therefore, it is more practical to have
one (pole) mass and width for each resonance in particle
data tables [5] than to stockpile different (Breit-Wigner)
masses and widths for each process in which the resonance
contributes.
In our study, there are two resonances that show system-

atic discrepancy between the PDG mass estimates [5] and
our results presented here: the �ð770Þ and the �ð11020Þ.
For � meson an alternative parametrization by Gounaris
and Sakurai [2] is used, where mass and width are defined
somewhat unconventionally to take into account its
mixing with !ð782Þ and �ð1450Þ. The �ð11020Þ mass
and width were fit parameters to a Gaussian with a rela-
tivistic tail [10]. For both resonances cited values in the
PDG tables are neither masses consistent with the original
Breit-Wigner idea, being at the peak of the resonance,
nor the pole positions. Since the resonance parameters
are collected in PDG tables to be used as an input for
various models and for comparison between theory and
experiment, placing all these resonance parameters in a
single table may generally create considerable confusion.
This confusion is evident in the � meson case where
in the table with predominantly Gounaris-Sakurai masses
(about 775 MeV) one can find pole masses (roughly
760 MeV).
In conclusion, we have shown here that the original

Breit-Wigner formula may be drastically improved by
including a single additional (phase) parameter �p. Our

results suggest that parameter �p seems to be equal to the

half of the resonance residue phase �p, regardless of the

resonance inelasticity. This new formula has two equiva-
lent forms that can be used to estimate either the pole or the
Breit-Wigner parameters in a model-independent way.
Having both forms enabled us to learn that in the PDG
tables [5] there are values that do not correspond either to
the pole or to Breit-Wigner parameters. Such an outcome
undermines the proper matching between microscopic
theories (e.g., lattice QCD [4]) and experiment.
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FIG. 5. Fitting pole parametrization, Eq. (11), to the data [5].
The pole and BW parameters are consistent with their PDG
estimates (dotted lines).

TABLE II. Resonance parameters extracted by using new
Breit-Wigner formula, Eq. (14). PDG estimates are from
Ref. [5].

Resonance Mb=MeV �b=MeV xb=% 2�b=
�

�ð770Þ 761� 1 139� 2 0.71 0� 1
PDG 775:5� 0:3 146:2� 0:7 0.69 � � �
�ð1232Þ 1233� 1 120� 1 102� 1 �46� 1
PDG-BW 1232� 2 117� 3 100 � � �
Nð1440Þ 1443� 2 325� 11 61� 4 �80� 2
PDG-BW 1440�30

20 300�150
100 65� 10 � � �

�ð11020Þ 11 010� 2 53� 8 0.10 �52� 8
PDG 11 019� 8 79� 16 � � � � � �
Zð91188Þ 91 191� 5 2494� 5 15.4 �2:2� 0:2
PDG-BW 91 188� 2 2495� 2 15.3 � � �
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FIG. 4. Fitting pole parametrization, Eq. (11), to the BABAR
data [8]. Pole and BW masses are clearly distinct, but PDG
estimate coincides with neither of them.
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