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The total gluon helicity in a polarized proton, measurable in high-energy scattering, is shown to

be the large momentum limit of a gauge-invariant but nonlocal, frame-dependent gluon spin ~E� ~A? in

QCD. This opens a door for a nonperturbative calculation of this quantity in lattice QCD and also

justifies using free-field expressions in the light-cone gauge as physical observables.
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The total gluon helicity �G ¼ R
dx�gðxÞ in a longi-

tudinally polarized proton is an important physical
quantity that has motivated much experimental effort to
measure in high-energy scattering [1–4]. It helps to
understand, among other things, how the helicity of a
fast-traveling proton is composed of partons’ helicity
and orbital angular momentum [5–9]. The factorization
theorems in quantum chromodynamics (QCD) indicate
that �G is a matrix element of a complicated light-cone
correlation operator of the gluon fields [10] and has a
simple physical interpretation only in the light-cone
gauge Aþ ¼ 0 natural for parton physics [5]. This state
of understanding makes computing �G in lattice QCD
infeasible and raises the fundamental question about
the gauge invariance of the gauge particle spin in a
bound state [11].

In this Letter, we report a breakthrough in under-
standing the physics of �G and correspondingly leading
to a practical way to its calculation in lattice QCD.
We find that �G can be obtained by boosting a matrix

element of the gluon spin operator ~E� ~A? to the infinite

momentum frame (IMF), where ~A? is the transverse part
of the gauge potential. This operator was first proposed
in Ref. [12] as the gauge-invariant gluon spin, but
has been criticized as physically uninteresting because
of its frame dependence [13]. The physics behind the
IMF limit we propose here goes back to the well-known
Weizsäcker-Williams equivalent photon picture for
high-energy scattering [11]. But of course, there are
subtleties in taking the IMF limit. In particular, the
matrix element has a singular dependence on the bound
state momentum in perturbation theory as it approaches

infinity. Moreover, the anomalous dimension of ~E� ~A?
does not coincide with that of the nonlocal light-cone
correlation in the factorization theorems [14]. Therefore,
we will provide a well-defined procedure, or a matching
condition, for the limiting procedure. In particular,
we will show in a one-loop example how to obtain

�G from the IMF limit of a frame-dependent, time-
independent matrix element. This example helps to
demonstrate that a nonperturbative �G can be recovered
from a frame-dependent lattice matrix element of a

Euclidean space operator ~E� ~A?.
The difficulty in understanding and calculating �G is

easy to appreciate. Through QCD factorization, it has been
shown that �G is a matrix element of a nonlocal operator
involving light-cone correlation [10],

�G ¼
Z

dx
i

2xPþ
Z d��

2�
e�ixPþ��hPSjFþ�

a ð��Þ
�Labð��; 0Þ ~Fþ

�;bð0ÞjPSi; (1)

where jPSi is a proton plane-wave state with momentum
P� and polarization S�, ~F��¼ð1=2Þ�����F��, and

Lð��;0Þ¼Pexp½�ig
R��
0 Aþð��;0?Þd��� with Aþ �

TcAþ
c is a light-cone gauge link defined in the adjoint

representation. The light-front coordinates are defined as

�� ¼ ð�0 � �3Þ= ffiffiffi
2

p
. It is usually difficult to see the above

operator as the gluon spin or helicity. However, in the light-
cone gauge Aþ ¼ 0, the whole operator collapses into
~E� ~A, the textbook definition of the gauge particle spin
[11], which is known to be gauge dependent, and �G can
be regarded as the number of gluon partons with helicity in
the direction of the proton helicity minus that with opposite
helicity. Because of the explicit presence of the real time in
��, one cannot evaluate the above expression in lattice
QCD. An early attempt to get the gluon helicity on lattice
was to calculate the matrix element of F��

~F�� [15], but

there is no demonstrated connection between this and �G.
To find the physics of �G without committing to the

light-cone gauge, let us examine the operator structure a bit
further. For simplicity, we first consider the U(1) gauge
theory (quantum electrodynamics, or QED) so that the
gauge link is absent. Carrying out the integration over
the longitudinal momentum, the gauge-invariant photon
‘‘spin’’ operator becomes
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Ŝinv	 ð0Þ ¼ i
Z dx

x

Z d2k?
ð2�Þ3

Z
d��d2�?e�iðxPþ��� ~k?� ~�?Þ½ixPþAið��; ~�?Þ � iki?A

þð��; ~�?Þ� ~Fþ
i ð0Þ

¼ �
Z dkþd2k?

ð2�Þ3
�
~Aiðkþ; ~k?Þ �

ki?
kþ

~Aþðkþ; ~k?Þ
�
~Fþ
i ð0Þ ¼

�
~Eð0Þ �

�
~Að0Þ � 1

rþ
~rAþð��Þ

��
3
; (2)

where rþ ¼ @=@��, Ei ¼ Fiþ, kþ ¼ xPþ, and the third
component of a vector is interpreted in the usual sense of
the cross product. The �� coordinate in Aþ is taken to 0
after operating with the inverse derivative which is inde-
pendent of the boundary condition because ~rAþð1Þ ¼ 0.

The above operator is just the IMF limit of ~E� ~A?,
where Ei ¼ Fi0 is the electric field in ordinary frame, and
Ai
? ¼ ð
ij �rirj=r2ÞAj is the transverse part of the

gauge potential and is invariant under gauge transforma-
tion. The rule of taking the IMF limit of an operator is as

follows: For any vector V�, define V� ¼ ðV0 � V3Þ= ffiffiffi
2

p
.

If the boost is along the 3-direction, then the components
of the vector go like Vþ ! Vþ�, V� ! V�=�, and V? !
V?. Thus, r2 ! ðrþÞ2�2 and ~r � ~A ! rþAþ�2 for the
leading components. Using these rules, one finds that
~E� ~A? ! ~E� ð ~A� ð1=rþÞ ~rAþÞ, which is exactly the
above operator in Eq. (2).

It is known that in electromagnetic theory the vector
potential can be uniquely separated into the longitudinal

and transverse parts, ~A ¼ ~Ak þ ~A?, and the transverse part
is gauge invariant [16]. Given ~A, ~A? can be uniquely

constructed as a functional of ~Awith an appropriate bound-

ary condition. Thus, ~E� ~A? is a gauge-invariant operator
and can be regarded as the gauge-invariant part of the

gauge particle spin [12]. ~E� ~A? is a nonlocal operator
in that it depends on the gauge potential over all space.

It is important to realize that separating ~A and ~E into
longitudinal and transverse parts is in general not a physi-
cally meaningful thing to do. In the first place, the physics

of ~E is to apply force to electric charge, and there is no

charge that responds separately to ~Ek and ~E?. Second, in a
different frame, one sees different transverse and longitu-
dinal separations, and therefore the notion has no Lorentz
covariance [13]. As we shall see, the frame dependence of
both parts is dynamical and cannot be calculated without
solving the theory. However, there are two exceptions
where the separation is meaningful. The first case concerns
the radiation field [17]. For free radiation, by separating out
the unphysical degrees of freedom, one simplifies the
quantization procedure significantly. In the laser beam,
this separation allows one to talk about the gauge-invariant
photon spin and orbital angular momentum [18]. The
second case is the IMF, which is our interest here. In the
IMF, Ek � E?, and the electromagnetic field can be

regarded as free radiation. This was recognized long ago
by Weizsäcker and Williams, in the name of equivalent

photon approximation [11]. Only then, ~E� ~A? can be

understood as a physical quantity, where ~E can also be

replaced by ~E?.
Therefore, the photon helicity measurable in high-

energy scattering can be calculated as the IMF limit of a

matrix element of the static operator ~E� ~A?. To calculate
the matrix element of the time-independent, albeit non-
local, operator is a standard practice in lattice QCD. It will
be dynamically dependent on the momentum of the exter-
nal particle [13]. In fact, the dependence is singular in the
leading order perturbation theory. In the IMF limit, the
matrix element diverges. To obtain the physically interest-
ing finite light-cone matrix element, one has to find a
matching condition, which we will come to after establish-
ing a similar connection in QCD.
The case for QCD is a bit more complicated. Separating

~A into longitudinal and transverse parts requires general-
izing the observations in QED to similar conditions in
QCD, which was considered long ago [19] (see also

Ref. [12]). Clearly, we would like to have ~A? transform
covariantly under gauge transformation,

~A? ! UðxÞ ~A?UyðxÞ; (3)

where ~A? � Ta
~Aa
?, so it is easy to construct gauge-

invariant quantities with ~A?. Second, we require ~Ak to

produce null magnetic field, as it does in QED. This
condition is [19]

@iAj;a
k � @jAi;a

k � gfabcAi;b
k Aj;c

k ¼ 0; (4)

which is a nonlinear equation to solve for Ai
k as a functional

of Ai. Moreover, the transverse part of the gauge potential
satisfies a generalized Coulomb condition [19]

@iAi
? ¼ ig½Ai; Ai

?�: (5)

We can then go through a similar derivation as in the
QED case and find [20]

Ŝinvg ð0Þ ¼
�
~Eað0Þ �

�
~Aað0Þ � 1

rþ ð ~rAþ;bÞLbað��; 0Þ
��

3
;

(6)

where the inverse derivative acts on everything after it and
takes the �� coordinate in the gauge link to 0. To get the
linear term in A�, the quadratic term in the gauge field
cancels with the derivative acting on the gauge link.
It is a bit involved to show that the expression in the

parentheses above is indeed ~A? in the IMF. Since ~A? ¼
~A� ~Ak, we just need to solve for ~Ak. After solving
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Eqs. (4) and (5) order by order in g, we find that Aþ
?

vanishes, and thus Aþ
k ¼ Aþ in the IMF. Substituting this

into Eq. (4), we obtain a first-order inhomogeneous linear
equation for Ai

k,

@þAi;a
k � gfabcAþ;bAi;c

k ¼ @iAþ;a: (7)

Its solution is easy to construct as a geometric series
expansion

Ai;a
k ¼ 1

rþ

�
1þ

�
�igAþ 1

rþ

�
þ � � � þ

�
�igAþ 1

rþ

�
n

þ � � �
�
abð@iAþ;bÞ: (8)

By commuting @iAþ systematically to the front of the
expression, one finds

Ai;a
k ð��Þ ¼ 1

rþ ½ð@iAþ;bÞLbað�0�; ��Þ�; (9)

where the coordinate �0� in the gauge link is taken to ��
after operating with the inverse derivative.

Alternatively, one can multiply a gauge link L on both
sides of Eq. (7) and find after some manipulations

@þðAi;a
k LadÞ ¼ ð@iAþ;aÞLad: (10)

It is then straightforward to see that the solution for Ai;a
k is

formally given by Eq. (9). Clearly, ~Aa
kð0Þ is just the part

subtracted from ~Aað0Þ in the gluon-helicity operator in
Eq. (6). Therefore, we established the same conclusion in
QCD that the gluon-helicity operator is the IMF limit of the

gauge-invariant, nonlocal gluon spin operator ð ~E� ~A?Þ3.
Now we show that the matrix element of Ŝinv	 ¼

ð ~E� ~A?Þ3 depends on the choice of frames dynamically.
By ‘‘dynamically’’ we mean that the frame dependence
cannot be obtained from Lorentz transformation and is a
function of dynamic details. Let us consider the example of
photon spin in a free electron state jp; si. A simple perturba-
tive calculation of Fig. 1 yields

hp; sjŜinv	 jp; si ¼ �em

4�

�
5

3
Dþ 31

9
þ 2

Z 1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ln

�
�
1þ x

~p2

m2

��
�uðp; sÞ�3uðp; sÞ; (11)

where p� ¼ ðp0; 0; 0; p3Þ, D ¼ 1=�� 	E þ ln4�þ
lnð�2=m2Þ, and m is the mass of the electron used to
regularize the collinear divergence. The result has a non-
trivial dependence on the electron momentum ~p2, which
makes its physical interpretation less straightforward.
In particular, the result is divergent in the IMF limit.
The ultraviolet (UV) part of thematrix element is consistent
with that found in Ref. [14]. Our result also shows that the
statement in Ref. [21] about the frame independence is
incorrect.
However, the measurable photon helicity can be

obtained by the same matrix element by going to the
IMF limit first before the loop-momentum integration. In
this limit, the external momentum dependence is dropped
out, and the matrix element becomes

hp; sjŜinv	 jp; si ¼ �em

4�
ð3Dþ 7Þ �uðp; sÞ�3uðp; sÞ: (12)

This is exactly the same as that computed using the facto-

rization expression in Eq. (1) or using ~E� ~A (notice the

full ~A), in the light-cone gauge Aþ ¼ 0 [22]. The UV
property of the matrix element is the same as that derived
by Altarelli and Parisi (AP) [23]. In fact, in the original
derivation of the AP evolution equation, a finite frame
result was used to obtain parton physics in the IMF limit.
Our result also indicates the claim that gluons carry only
about 1=5 of the nucleon momentum in Ref. [12] is incor-
rect, because the matrix elements of the quark and gluon
momentum operators were calculated in the finite momen-
tum frame. We have verified that if they are boosted to the
IMF, we can get the standard mixing matrix in Ref. [24].
Meanwhile, it should be pointed out that the result in
Ref. [25] is standard because they used the light-cone
gauge condition.
The above calculation shows that the IMF and UV limits

are not exchangeable. However, since the collinear-
divergent part is the same, the difference is a perturbatively
calculable quantity. This turns out to be the key for a
nonperturbative computation of the gluon helicity. Since
lattice QCD cannot handle the real time dependence, a
direct calculation of Eq. (1) is infeasible. However, one
can get the same matrix element by studying the matrix

element of ~Sinvg ¼ ~E� ~A? as a function of external mo-

mentum ~P. The largest momentum attainable on a lattice is
of order 1=a, with a being the lattice spacing. On the other
hand, the matrix element also has UV dependence on 1=a,
and can be calculated in perturbation theory. Thus, we can
calculate the matrix element at the largest momentum
�1=a, matching the results of the two different limits in
a perturbative way. For instance, in the above one-loop
example with a finite �, one can match the two results by
setting

ln ~p2 ¼ ðDþ lnm2Þ þ 16

3
� 2 ln2: (13)FIG. 1. Matrix element of ~E� ~A? in an asymptotic electron

state.
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The result will be accurate up to controllable power
corrections of type M2=P2, where M is the nucleon
mass. On the lattice, Dþ lnm2 is replaced by � lna2,
and the matching condition becomes lnðpaÞ2 ¼ const.
We will explore the issue of the lattice calculation
and matching conditions in more detail in a separate
publication [26].

At last, it is useful to consider the frame dependence of
the angular momentum sum rule, which has recently been
strongly advocated in the literature [12,21,27]. The pri-
mary goal is to find a simple free-field form of the angular
momentum decomposition so that the individual parts have
simple physical interpretation. The closest gauge-invariant
form involves the expression [12]

~J ¼
Z

d3xc y 1
2
~�c þ

Z
d3xc y ~x� 1

i
ð ~r� ig ~AkÞc

þ
Z

d3x ~Ea � ~Aa
? þ

Z
d3xEi

a ~x� ~rAi;a
? : (14)

This result is frame dependent and not physically interesting

in general. However, in the IMF one hasAi;a
k ð��Þ ¼ ð1=rþÞ

½riAþ;bLbað�0�; ��Þ�; the above decomposition is the
same as the Jaffe-Manohar result in the light-cone gauge
Aþ ¼ 0 [5]. Therefore, this serves to justify that the light-
cone gauge is the natural choice in the IMF, where free-field

expressions such as ~E� ~A attain physical significance. In
particular, the corresponding matrix elements are physically
measurable.

To conclude, we have shown that the total gluon
helicity measured in high-energy scattering is the IMF
limit of a matrix element of a gauge-invariant operator.
This limit does not commute with the UV limit in
quantum field theory, and therefore the two operators
have different anomalous dimensions at first sight.
However, they can be related through a matching con-
dition. This allows an otherwise infeasible lattice QCD
calculation of light-cone correlations. We have also
explained why free-field theory expressions in the
light-cone gauge are physically meaningful, as they
correspond to the IMF limit of gauge-invariant but non-
local expressions in interacting theories.
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