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We argue that the observed large-scale cosmic microwave anomalies, discovered by WMAP and

confirmed by the Planck satellite, are most naturally explained in the context of a marginally open

universe. Particular focus is placed on the dipole power asymmetry, via an open universe implementation

of the large-scale gradient mechanism of Erickcek et al. Open inflation models, which are motivated by

the string landscape and which can excite ‘‘supercurvature’’ perturbation modes, can explain the presence

of a very-large-scale perturbation that leads to a dipole modulation of the power spectrum measured by a

typical observer. We provide a specific implementation of the scenario which appears compatible with

all existing constraints.
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Introduction.—The confirmation by the Planck satellite
[1] of puzzling anomalies in the large-scale cosmic micro-
wave sky found in data from theWMAPmission [2] has led
to renewed interest in the possibility that they may have an
underlying physical explanation. The various anomalies
include alignments of the lowest cosmic microwave back-
ground (CMB) multipoles [3], a large cold spot [4], a
general power deficit for multipoles below 40 [1], and a
dipole power asymmetry extending to small angular scales
[1,5]. While none of these anomalies individually carries
great significance [6], they are collectively troubling, despite
the success of the standard cosmological model in fitting the
precision data at higher multipoles and deserve to be taken
seriously; see, e.g., Refs. [7,8]. In keeping with recent papers
on the topic, e.g., Refs. [9–11], we will focus on the dipole
power asymmetry as it is the best quantified, although a truly
compelling explanation ought to simultaneously explain
several anomalies. Following Refs. [1,6], we refer specifi-
cally to the case of a dipolar modulation of the power
spectrum, distinguishing this from other forms of hemi-
spherical asymmetry ormore general power spectrummodu-
lation, say, via bipolar spherical harmonics beyond the dipole
contribution.

If there is an underlying physical cause for the anomalies,
the implication is that there is a new large physical scale
relevant to cosmology, beyond which the extrapolation of
the standard �CDM cosmology breaks down. There are at
least three candidates for such a scale: a topological identi-
fication scale for the Universe, the scale corresponding to
the beginning of cosmological inflation (or a sharp exit of
our region from an eternally inflating phase), and the curva-
ture scale of a nonflat universe.

It ought to be possible to explain the anomalies with
cosmic topology, as it can naturally break isotropy.
However, searches in data have found no evidence [12],
and it is not yet clear whether it would be possible to

explain the anomalies without generating other signals
that should have been detected, such as circles in the sky.
If inflation started not long before our observable Universe
left the inflationary horizon, we should expect large-scale
perturbations which could readily affect our Universe on
the largest scales, but it is not clear that such effects are
calculable. We therefore wish to focus this article on the
third possibility, that the new scale is the curvature scale.
Present constraints from data, particularly Planck [13],

assure us that the Universe is within a percent or so of
spatial flatness. In an open universe, this corresponds to a
limit that the comoving curvature scale

rcurv ¼ a�1H�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1��totalj
p

; (1)

where �total is the density parameter including any dark
energy component, is at least ten times the Hubble radius
H�1=a. This, however, is only about 3 times the size of the
observable Universe, insufficient to guarantee no observ-
able effects associated to the curvature scale.
It is tempting to think that the limit on curvature is

indicating that the Universe is flat on average. However,
there has been renewed motivation to consider marginally
open universes in the context of string landscape cosmol-
ogy [14], where it is quite plausible that our region of
the Universe arose from decay of a metastable false
vacuum state via bubble nucleation. Such tunnelings, via
the Coleman–de Luccia instanton [15], have long been
known to create effective open universes, and moreover
the difficulty in obtaining very large amounts of inflation
within the landscape [16] suggests that the subsequent
inflation within the bubble may not last so long as to
establish a universe indistinguishably close to flat [17–19].
Extensive arguments for searching for curvature effects
under these motivations have, for instance, been made by
Yamauchi et al. [20].
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Modulation by large-scale perturbations.—The observed
power asymmetry in the CMB sky can be modeled as a
dipole modulation of the power spectrum of an otherwise
statistically isotropic sky [21]

�Tðn̂Þ ¼ ð1þ Ap̂ � n̂Þ�Tisoðn̂Þ; (2)

where n̂ and p̂ are unit vectors in a sky direction and in the
dipole modulation direction, respectively. The modulation
amplitude A is measured in the CMB to be 0:07� 0:02 in
maps smoothed at 5� [1].

A mechanism to explain such a modulation, introduced
by Erickcek et al. [7], is to assume that the perturbations in
our Universe are modulated by a very-large-scale perturba-
tion across our Universe. Such a perturbation cannot be the
usual inflaton-generated curvature perturbation because
such a perturbation makes a large contribution to the
CMB quadrupole—the Grishchuk-Zel’dovich effect—while
if anything, the observed CMB quadrupole is smaller than
expected rather than larger. A suitable effect can, however,
arise if the very-large-scale perturbation is generated by the
curvaton mechanism [7,9].

The nature of the modulating effect is one of cosmic
variance. The modulating perturbation is presumably itself
stochastic, corresponding to some power spectrum at very
low wave numbers k � aH, and the mean power spectrum
on subhorizon scales, averaged over all possible observers,
is unmodulated. However a typical, rather than average,
observer sees a stochastic short-scale spectrum superim-
posed on an effectively classical very-large-scale variation
within that region, such that the power spectrum measured
by a typical observer does feature the modulation.

Modulation in an open universe.—A drawback of the
modulation scenario as described in the literature thus far is
the lack of an explanation for the existence of the modu-
lating mode(s), other than a vague but noncalculable sug-
gestion that they may somehow relate to the onset of
inflation or the end of an eternal inflation stage [7]. This
issue is substantially alleviated in the context of an open
universe inflation model, both because the curvature scale
sets a scale for superhorizon phenomena and because open
universes feature a new set of perturbation modes known as
supercurvature modes that may be excited by inflation and
can carry information about the pretunneling vacuum state.

Supercurvature modes correspond to eigenmodes of the
Laplacian with wave numbers in the range 0< k2 < 1
when expressed in curvature units. These functions are
not needed in order to expand a general radial function,
for which the set with k2 � 1 suffices to form a complete
basis set, but they are nevertheless necessary in order to
provide a general (scalar) random field. This was first
discovered by mathematicians in the 1940s [22] and then
deployed in open inflation models during the 1990s [23].
Moreover, it was discovered that open inflation models
typically excite a single one of those modes, whose ampli-
tude can be found by matching the pretunneling quantum

fluctuations across the bubble wall into the open universe.
If the vacuum energy density before tunneling is much
greater than that immediately afterward, the amplitude of
the supercurvature mode may be much higher than that of
the subsequently generated spectrum of subcurvature
modes which provide the main contribution to CMB
anisotropies on all scales [24]. Hence, such models give
exactly the type of power spectrum phenomenology
required by the modulation scenario.
Existing open inflation perturbation calculations have

focused on adiabatic perturbations generated by the inflaton
field. For the present purpose, these are of no use; as in the
flat case, they will provide large contributions to the CMB
quadrupole at amplitudes well below that needed to provide
the modulation. Instead, one needs to add a curvaton field �
to an existing open inflation model. The simplest option for
the curvaton is that it be massive but otherwise noninteract-
ing during inflation (it will, of course, need to have decay
channels after inflation to convert its perturbations into
a curvature perturbation), i.e., with potential Vð�Þ ¼
ð1=2Þm2

��
2. Such a field adds three parameters to an open

inflation model, being the mass m�, the ‘‘initial’’ value of
the curvaton field �� in our region of the Universe during
inflation, and the curvaton decay rate that sets its conversion
to normal matter.
The simplest option for the inflaton is a single-field

model with a barrier and a flat region supporting slow-
roll inflation after tunneling, as proposed by Bucher et al.
[18]. Given complete freedom to design such a potential,
it should be possible to create a working model, but we
anticipate considerable fine-tuning may be needed to
arrange for the supercurvature mode to be significantly
enhanced over the normal spectrum (indeed, Ref. [19]
shows that considerable tuning is needed to get open
inflation to work at all in such scenarios).
Instead, a more promising avenue is the two-field open

inflation models introduced by Linde and Mezhlumian
[19], where the tunneling is executed by one field, which
we label c , and slow-roll inflation within the bubble is
driven by a different field �. They consider two models:

V1 ¼ 1

2
m2�2 þWðc Þ; (3)

V2 ¼ 1

2
g2�2c 2 þWðc Þ; (4)

where in each case Wðc Þ is some tunneling potential
whose false vacuum is at c ¼ 0 and whose precise shape
does not appear crucial.
The perturbations in these models were investigated in

Ref. [24], by propagating fluctuations in the � field from
the pretunneling de Sitter phase across the bubble wall into
the open universe created by the c tunneling (see also
Ref. [25] for an analysis of the perturbations in a one-field
model). Their result is that the adiabatic supercurvature
spectrum, for a nearly massless scalar, is a delta function

PRL 111, 111302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 SEPTEMBER 2013

111302-2



located at ðkcurvL Þ2 ’ 2m2
F=3H

2
F, where the wave number is

specified in units of the curvature scale kcurv ¼ 1=rcurv
and mF is the field mass during the false vacuum stage.
The amplitude is enhanced relative to the subcurvature
(continuum) spectrum by a factor H2

F=H
2
T , where HF and

HT are the Hubble parameters before and after the quantum
tunneling. This factor was envisaged to be large in the
models introduced in Ref. [19].

The asymmetry A is related to the non-Gaussianity
parameter fNL, given a single modulating mode with
wave number kL, using [9,11]

jAj ¼ 6

5
jfNLjðkLxlsÞP1=2

R;L;

’ 18

5
jfNLjj1��totalj1=2kcurvL P1=2

R;L;

(5)

where kcurvL ¼ kLxls=ð3j1��totalj1=2Þ, xls ’ 3a�1H�1 is
the distance to last scattering, and PR;L is the supercurva-

ture power spectrum [i.e., the coefficient of a delta-
function contribution �ðlnk� lnkLÞ].

The highest achievable amplitude depends on the limits
on the various terms on the right-hand side of Eq. (5). The
non-Gaussianity and departure from flatness are directly
constrained by Planck. The perturbation amplitude of the
supercurvature mode is constrained by its contribution to the
quadrupole via the Grishchuk-Zel’dovich effect. This has
been computed in Ref. [26] in the limit of flat geometry as

6CGZ
2 ’ 64

625�
ðkcurvL Þ2PR;Lð1��totalÞ2: (6)

The apparent strong dependence on 1��total arises
because the expression considers a mode fixed in units of
the curvature scale, and as �total ! 1 that scale reaches
arbitrarily long comoving wavelength. In the flat limit,
the quadrupole constraint is stronger than the octupole.
We adopt the same limit on such a contribution to the
quadrupole as Ref. [7], CGZ

2 < 3:6� 10�11, obtaining

kcurvL P1=2
R;Lj1��totalj< 8� 10�5: (7)

This implies

jAj< 3� 10�4jfNLjj1��totalj�1=2: (8)

It appears from this expression that an arbitrarily large
asymmetry could be obtained in the flat limit, but that is
not the case due to the constraints that kcurvL < 1 to be

supercurvature, and P1=2
R;L < 1 for perturbation theory to

apply (Lyth argues for a stronger limit P1=2
R;L < 1=jfNLj

[9]). These require 1��total to be greater than 8� 10�5

to saturate Eq. (7). Maximizing Eq. (8) under these con-
straints combined with Eq. (7) yields a maximum achiev-
able asymmetry of

jAj< 0:03jfNLj (9)

when these constraints are simultaneously saturated. This
is very similar to results that have been obtained in the

flat case, indicating that the flat-space limit is achieved
smoothly, giving a finite maximum asymmetry.
Equation (8) shows that the required asymmetry can

indeed be generated by a supercurvature perturbation,
provided jfNLj is not far from the present limits.
Interestingly, to maximize the asymmetry, the curvature
should be as small as allowed by the constraint for the
supercurvature mode to exist, with viable scenarios requir-
ing roughly 8� 10�5 < 1��total < 10�3 if jfNLj & 10.
We can convert these into bounds on the curvaton mass

mF and tunneling ratio HF=HT . In fact, HF cancels in the

formula for kcurvL P1=2
R;L, and using PR;L ’ ðH2

F=H
2
TÞPR,

taking into account the observed continuum spectrum

normalization P1=2
R ’ 5� 10�5, we find

mF

HT

j1��totalj & 2: (10)

The maximum achievable asymmetry remains as above,
realized when this inequality is saturated. Typical parame-
ters would be 1��total ’ 10�4 and mF ’ 104HT , giving
jAj ’ 0:01jfNLj. The parameter HF is not directly con-
strained, but the consistency of the scenario requires it to
lie in the range ð2=3Þm2

F < H2
F < 4� 108H2

T .
A specific implementation.—As a proof of concept, we

assemble these ideas into a particular model, which, while
still a toy model, contains enough ingredients to generate
the desired outcome. The overall potential is

L ¼ Wðc Þ þ 1

2
m2

��
2 þ 1

2
m2

��
2 þ 1

2
g2c 2�2; (11)

where all fields can be taken to be canonically normalized.
The first two terms give exactly the Linde-Mezhlumian
model [19], whereWðc Þ is a tunneling potential, although
importantly we will define the true vacuum to be at c ¼ 0
and place the false vacuum at c F. The � field is respon-
sible for inflation after tunneling. The latter two terms
contain the curvaton field �, where we have included a
direct coupling to the tunneling field c reminiscent of the
second Linde-Mezhlumian model. The purpose of this
coupling term is to permit the curvaton mass to change
during the tunneling. After tunneling, the model effectively
reduces to the simplest curvaton scenario of two massive
noninteracting fields, as studied in Ref. [27]. Presuming
negligible inflaton perturbations, for the continuum spec-
trum, this model predicts a spectral index ns ’ 0:98 and a
small tensor-to-scalar ratio, which is an acceptable fit to
Planck data [28].
In our Lagrangian, the � field appears in just the same

way as � in the first Linde-Mezhlumian model, Eq. (3),
and hence the field perturbations of � have the same form
as computed in Ref. [24]. This gives a curvaton spectrum
featuring a sharp supercurvature spike and a nearly scale-
invariant subcurvature spectrum, as required for a success-
ful modulation scenario. To avoid a similar spike in the
inflaton spectrum, either the inflaton mass could be larger
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thanHF, in which case the supercurvature mode would not
exist at all for that field, or much less than the curvaton
mass, so that its wave number is much smaller than that of
the curvaton spike.

The wave number and amplitude of the supercurvature
mode are determined by the ratios ðm2

� þ g2c 2
FÞ=H2

F and
H2

F=H
2
T , respectively; suitable values of each can be

obtained by choice of the tunneling potential shape. The
� field then drives inflation, and its mass may be chosen to
make its contribution to the curvature perturbation negli-
gible. The curvaton decays once inflation is over, generat-
ing the curvature perturbation; the appropriate decay time
scale can be fixed by choice of the curvaton decay constant,
which does not affect other observables. As the curvaton
itself must not drive a period of inflation, it may be neces-
sary to suppress its mass after tunneling, hence our inclu-
sion of a coupling to the tunneling field which generates a
large mass before tunneling that reverts to a small ‘‘bare’’
mass m� afterward. More detailed calculations are
required to demonstrate whether this term is really neces-
sary, as a small curvaton mean value �� may already
ensure this condition.

Finally, we note that limits on power asymmetry from
quasars [29] and the small-angle CMB may require AðkÞ to
be scale dependent. We have not tried to address this, but
the requirement is no different from the flat case; proposals
include isocurvature perturbations [30] or a scale-
dependent fNL as in axion curvaton models [9,31].

We conclude that a suitably constructed model of the
type we have described could explain the origin of the
large-scale modulating perturbation and connect it to
curvature-scale effects in a marginally open universe.
Ours is the first proposal of a model which permits a
complete first-principles calculation of a perturbation
spectrum, including a large-scale modulation effect of the
observed amplitude.
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Sanz, and L. Cayón, Astrophys. J. 609, 22 (2004); P.
Mukherjee and Y. Wang, Astrophys. J. 613, 51 (2004);
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