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We present a generally covariant and parity-invariant two-frame field (‘‘zwei-dreibein’’) action for

gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use

Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how

zwei-dreibein gravity unifies previous ‘‘3D massive gravity’’ models and extends them, in the context

of the AdS/CFT correspondence, to allow for a positive central charge consistent with bulk unitarity.

DOI: 10.1103/PhysRevLett.111.111102 PACS numbers: 04.50.Kd, 04.60.�m

Einstein’s theory of general relativity (GR) can be
viewed as a field theory describing the interactions of a
massless spin-2 particle, the graviton. This point of view
suggests that GR might be generalized to allow for a small
graviton mass. The natural starting point for such inves-
tigations is the massive spin-2 field theory constructed long
ago by Fierz and Pauli, but it has proved difficult to find a
consistent interacting version of this theory. One problem
is the generic appearance of an unphysical scalar mode of
negative energy: the Boulware-Deser ghost [1]. In the
context of a three-dimensional (3D) spin-2 theory, many
of the problems were resolved a few years ago by the
construction of ‘‘new massive gravity’’ (NMG). Although
this is a general covariant (diffeomorphism-invariant) the-
ory, of fourth order in derivatives in its initial formulation,
linearization yields a free field theory that is equivalent
to the 3D version of the Fierz-Pauli (FP) massive spin-2
theory [2]. Moreover, the nonlinearities are precisely those
for which the Boulware-Deser ghost is avoided [3].

In an initially parallel development, a ghost-free non-
linear extension of the four-dimensional (4D) FP spin-2
field theory was constructed by de Rham, Gabadadze, and
Tolley [4]. One unattractive feature of this ‘‘dRGT’’ model
is the fact that it involves a fixed background metric, in
addition to the dynamical metric, and so lacks the general
covariance of Einstein’s GR. General covariance can be
restored, albeit at the cost of re-introducing a massless
graviton, by considering an alternative ‘‘bimetric’’ gravity
model [5] from which the dRGTmodel can be recovered as
a truncation in which one metric is taken to be nondynam-
ical. The structure of this bimetric model becomes quite
simple when formulated in terms of two vierbeins rather
than two metrics [6], i.e., when formulated as a
‘‘zwei-vierbein’’ model (see Ref. [7] for earlier related
models). In this formulation, the absence of ghosts can
be seen easily, although it has been shown that shock
waves in these 4D massive gravity models propagate
acausally [8–10].

Whereas the motivation for 4D massive gravity comes
mainly from potential applications to cosmology, the moti-
vation for 3D massive gravity stems from simplifying
features of the quantum theory arising from the lower
dimension. In particular, 3D massive gravity models
provide a new arena for the AdS/CFT correspondence, in
which a 3D quantum gravity theory in an asymptotically
anti–de Sitter (AdS) space-time is conjectured to be
equivalent to a 2D conformal field theory (CFT) on the
AdS boundary. In the semiclassical approximation to the
quantum gravity theory, the dual CFT has a large central
charge that can be computed from the asymptotic symme-
try algebra [11]. The AdS/CFT correspondence does not
obviously apply to the 3D dRGT model because of its
lack of general covariance. It does apply to NMG, but
perturbative unitarity (in the bulk) holds if and only if
the central charge of the boundary CFT is negative, which
implies that the CFT is nonunitary.
This clash between bulk and boundary unitarity is a

feature of all currently known generally covariant 3D
models of massive gravity. In particular, the bimetric
model of Ref. [12], although permitting a positive central
charge, is not unitary in the bulk due to the Boulware-
Deser ghost. In this Letter, we present a parity-preserving
‘‘zwei-dreibein’’ model of massive gravity that overcomes
this problem. The general model of zwei-dreibein gravity
(ZDG) has five continuous parameters and a choice
of sign, but we find a parameter range for which the bulk
theory is unitary and has a boundary CFT with positive
central charge. For other choices of the parameters, we
exhibit limits in which the dRGT model and NMG are
recovered [5,13], the latter in its ‘‘Chern-Simons-like’’
form [14]. ZDG thus unifies these two rather different
approaches to massive gravity in three dimensions, in
addition to extending them in a way that resolves a major
difficulty.
The ZDG fields are a pair feaI ; I ¼ 1; 2; a ¼ 0; 1; 2g

of Lorentz-vector valued one-forms and a pair !a
I of

PRL 111, 111102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 SEPTEMBER 2013

0031-9007=13=111(11)=111102(5) 111102-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.111102


Lorentz-vector valued connection one-forms, from which
we may construct pairs of torsion and curvature two-forms:

Ta
I ¼ deaI þ "abc!IbeIc; Ra

I ¼ d!a
I þ

1

2
"abc!Ib!Ic:

(1)

We use a notation in which the exterior product of forms is
implicit. It will be convenient to introduce a sign � ¼ �1
and two independent positive mass parameters MI, and to
define [13]

M12 ¼ ð�M1M2Þ=ð�M1 þM2Þ: (2)

This is positive for � ¼ 1 and finite for finite MI. It may
have either sign when� ¼ �1, and in this case, we assume
that M1 � M2. The Lagrangian three-form for ZDG can
now be written as

LZDG ¼ L1 þL2 þL12; (3)

where L1 and L2 are Einstein-Cartan (EC) Lagrangian
three-forms; i.e.,

L1 ¼ ��M1e1aR
a
1 �

1

6
m2M1�1"abce

a
1e

b
1e

c
1;

L2 ¼ �M2e2aR
a
2 �

1

6
m2M2�2"abce

a
2e

b
2e

c
2;

(4)

where m is a further mass parameter and �I are two
dimensionless ‘‘cosmological’’ parameters. The two EC
terms are coupled by the third term

L12 ¼ 1

2
m2M12"abcð�1e

a
1e

b
1e

c
2 þ �2e

a
1e

b
2e

c
2Þ; (5)

where �I are two dimensionless parameters.
The general ZDG model, as constructed above, depends

on five independent continuous parameters (�I,�I) and the
ratio M1=M2. The mass parameter m is convenient but
inessential because we could consider m2ð�I; �IÞ as inde-
pendent mass-squared parameters from which four dimen-
sionless parameters can be found by taking ratios with, say,
M1M2. In the absence of theL12 term, the action is the sum
of two EC actions and so has diffeomorphism and local
Lorentz gauge invariance separately for the two sets of EC
form fields; this is broken byL12 to the diagonal EC gauge
invariance found by identifying the two sets of EC gauge
parameters.

We now expand the two dreibeine about a common fixed
dreibein �ea of a maximally symmetric background with
cosmological constant �, and similarly for their respective
spin connections:

ea1 ¼ �ea þ �ha1 ; !a
1 ¼ �!a þ �va

1 ;

ea2 ¼ �ð �ea þ �ha2Þ; !a
2 ¼ �!a þ �va

2 ;
(6)

where � is a constant and � is a small expansion parameter.
The ZDG action may now be expanded in powers of �.
Cancelation of the linear terms both fixes �

�=m2 ¼ ��2�2 þ ðM12=M2Þð�1 þ 2��2Þ (7)

and imposes the following quadratic constraint on �:

½�2ð�M1 þM2Þ þ �2M2��2 þ 2ðM2�1 � �M1�2Þ�
� �½�1ð�M1 þM2Þ þ �1M1� ¼ 0: (8)

The quadratic terms in the expansion of the action may
now be diagonalized, provided that

Mcrit ¼ �M1 þ �M2 � 0; (9)

by introducing the new one-form fields

haþ ¼ ð�M1h
a
1 þ �M2h

a
2Þ=Mcrit;

vaþ ¼ ð�M1v
a
1 þ �M2v

a
2Þ=Mcrit;

(10)

and

ha� ¼ ha1 � ha2 ; va� ¼ va
1 � va

2 : (11)

In terms of these new fields, the quadratic Lagrangian

three-form takes the form Lð2Þ ¼ Lð2Þ
þ þLð2Þ� , with

Lð2Þ
þ ¼ �Mcrit

�
hþa

�Dvaþ þ 1

2
"abc �e

avbþvcþ

� 1

2
�"abc �e

ahbþhcþ
�
; (12)

where �D is the covariant exterior derivative with respect
to the background and

Lð2Þ� ¼ ���M1M2

Mcrit

�
h�a

�Dva� þ 1

2
"abc �e

avb�vc�

þ 1

2
ðM2 ��Þ"abc �eahb�hc�

�
; (13)

where

M2 ¼ m2ð�1 þ ��2Þ Mcrit

�M1 þM2

: (14)

The form fields va� appearing in the above quadratic
Lagrangian three-forms are auxiliary and may be elimi-
nated by their field equations. Eliminating vaþ, we find that
Lð2Þ

þ becomes the quadratic approximation to the Einstein-
Hilbert Lagrangian density in the AdS background; this
does not propagate any modes. Eliminating va�, we find

that Lð2Þ� is proportional to the Fierz-Pauli Lagrangian
density, in the AdS background, for a spin-2 field with
FP mass M. Notice that � contributes to the mass term,
which is zero when M2 ¼ �; this is the ‘‘partially mass-
less’’ case where the linearized theory acquires an addi-
tional gauge invariance. This case is not relevant when
�< 0 because there will be a spin-2 tachyon unless
M2 > 0. The parameters of the model are further re-
stricted by the requirement of positive kinetic energy,
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which amounts to bulk unitarity in the quantum theory;
recalling that M1, M2 > 0, we must have

��

Mcrit

> 0: (15)

Although the quadratic Lagrangian Lð2Þ is not diagonaliz-
able for Mcrit ¼ 0, we can still take the limit Mcrit ! 0 in
the field equations. The massive modes become formally
massless in this limit. We shall not discuss this ‘‘critical’’
case here.

The fact that ZDG propagates just two physical modes
(which happen to be spin-2 modes) implies that the dimen-
sion, per space point, of the physical phase space of the
linearized theory is 4. This remains true in perturbation
theory but does not exclude the appearance of additional
degrees of freedom in other backgrounds. However, it is
possible to determine the nonperturbative dimension of the
physical phase space by Hamiltonian methods. As the
action is Chern-Simons-like, being constructed as the inte-
gral of products of forms without an explicit metric, it is
already first order, and a space-time split, e.g., ea� ¼
ðea0 ; eai Þ (i ¼ 1, 2), suffices to put it into a form that is

‘‘almost’’ Hamiltonian, with the Hamiltonian being a sum
of Lagrange multipliers times constraint functions.
However, the field equations will generically imply addi-
tional secondary constraints and these should be included,
too (there are no tertiary constraints if one starts from a
first-order Chern-Simons-like action [15]). In the case of
ZDG, there are two secondary constraints:

0 ¼ "ije1i � e2j;
0 ¼ "ij½�1ð!1 �!2Þi � e1j þ �2ð!1 �!2Þi � e2j�;

(16)

where the dot product notation implies contraction of the
three-vectors with the Lorentz metric. In the NMG limit (to
be discussed below), these reduce to the two secondary
constraints found for that model in Ref. [14]. Each three-
vector form field in the action adds 2� 3 ¼ 6 (per space
point) to the phase-space dimension (from its space com-
ponents) and contributes three primary constraints (its time
components are the Lagrange multipliers). As we have four
such fields, the initial phase space has dimension 24 (per
space point), and there are 12 primary constraints, to which
we must add the two secondary constraints, making a total
of 14 constraints; of these, six are first class (corresponding
to the six EC gauge invariances) and eight are second class.
The constraints therefore reduce the phase-space dimen-
sion by 2� 6þ 8 ¼ 20, leaving a physical phase space of
dimension 24� 20 ¼ 4 (per space point), in agreement
with the linearized analysis. The counting here is exactly
the same as that given for NMG in Ref. [14], but the
detailed verification of the fact that there are six first-class
and eight second-class constraints (which we omit) is
different.

Any 3D gravity model admitting an AdS vacuum will
also admit the asymptotically AdS black hole metric found

by Bañados, Teitelboim, and Zanelli (BTZ) as solutions of
3D GR [16]. Generically, the mass (and entropy) of BTZ
black holes is positive whenever the central charge of the
dual CFT is positive. Therefore, in the NMG model, these
BTZ black holes have negative mass whenever the bulk
spin-2 modes have positive energy. As we shall see, ZDG
overcomes this problem.
The central charge of the boundary CFT for GR follows

directly from the results of Brown and Henneaux on
asymptotic symmetries in AdS3 [11]; their result is c ¼
24�‘MP, where ‘ is the AdS3 radius (so � ¼ �1=‘2) and
MP ¼ 1=ð16�GÞ, where G is the 3D Newton constant,
which has dimensions of inverse mass in units for which
the speed of light is unity. A similar computation for
ZDG, which we have verified using Hamiltonian methods,
shows that

c ¼ 12�‘Mcrit ð2DGÞ: (17)

We note that for M2 ¼ 0 and � ¼ 1, this reduces to the
Brown-Henneaux result, using that in our normalization
of Eq. (4) the Planck mass is MP ¼ M1=2. It was to be
expected that the central charge would be proportional to
Mcrit because it should vanish for the critical gravity case.
We are now in a position to determine whether there is a

parameter range for ZDG for which perturbative unitarity
in the bulk is compatible with positive central charge of the
boundary CFT.When� ¼ �1, the bulk unitarity condition
��=Mcrit > 0 is incompatible with the conditionMcrit > 0
unless � < 0, but then Mcrit < 0 from its definition, so we
require both � ¼ 1 and an AdS vacuum with � > 0 for the
compatibility of c > 0 with bulk unitarity. The absence of
tachyons M2 > 0 then requires that

�1 þ ��2 > 0: (18)

Of course, this result applies only when there is an AdS
vacuum, so we also need to check that Eq. (8) allows real
positive solutions for � such that �< 0.
A simple explicit case satisfying all the above conditions

can found by setting

M1 ¼ M2; �I ¼ 1; �I ¼ 3

2
þ �; (19)

where � is a positive constant. For this choice, the qua-
dratic equation (8) reduces to �2 ¼ 1, and choosing � ¼ 1,
we get an AdS vacuum with ð‘mÞ�2 ¼ � . Furthermore,
� � 1 for any ‘‘nearby’’ ZDG model, with slightly differ-
ent parameters, which are themselves constrained only by
inequalities that have been satisfied but not saturated. It
follows that the above explicit model is one of an open set
of models in the ZDG parameter space with similar
‘‘good’’ properties; these properties are not the result of
any fine-tuning of parameters that could be destabilized by
perturbative quantum corrections. There could also be
higher-derivative quantum corrections, of course, but these
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can be dealt with, in perturbation theory, in the same way
as in GR.

We conclude with a discussion of how the general ZDG
model unifies previous models of massive 3D gravity. To
see the relation to the 3D dRGT model, we set � ¼ 1 and
write

ea2 ¼ �ea2 þ 	ha2 ; !a
2 ¼ �!a

2 þ 	va
2 ; (20)

where �ea2 is a ‘‘reference dreibein’’ and �!a
2 the corresponding

(zero torsion) reference spin connection, and 	 is a constant.
If we now take 	 ! 0, keeping fixed 	2M2 ¼ M1 � 2MP,
then the ZDG Lagrangian three-form reduces to

L ¼ 2MPL0ðh2; v2Þ þ 2MPLdRGTðe1; !1Þ; (21)

where the first term is the quadratic approximation to the
3D EC action (in the reference background) for the fluctua-
tions (ha2 , v

a
2); because of its linearized EC gauge invari-

ances, this term propagates no modes. In the second term,
we have, after renaming (ea1 , !

a
1) as (e

a, !a),

LdRGT ¼ �eaR
a � �1

m2

6
"abceaebec

þm2

2
"abcð�1eaeb �ec þ �2ea �eb �ecÞ; (22)

which is the dreibein form of the 3D dRGT model.
To see the relation of ZDG to NMG, we set � ¼ �1 and

write

ea2 ¼ ea1 þ
	

m2
fa; !a

2 ¼ !a
1 � 	ha: (23)

We now consider the ‘‘flow’’

M1ð	Þ ¼ 2

�
1þ 1

	

�
MP; M2ð	Þ ¼ 2

	
MP;

�1ð	Þ ¼ � 	0

m2
	þ 1

	
; �2ð	Þ ¼ 2

�
1þ 1

	

�
;

�1ð	Þ ¼ 0; �2ð	Þ ¼ 1;

(24)

and send 	 ! 0 for fixed Planck massMP. This is the first-
order formulation of the limit considered in Ref. [13],
which exists only if the kinetic terms for ea1 and ea2 have
opposite sign, i.e., only if � ¼ �1. Then, the 	 ! 0 limit
of LZDG exists, too, with the final result that

L ¼ 2MP

�
eaR

a þ 	0

6
"abceaebec þ haT

a

� 1

m2

�
faR

a þ 1

2
"abceafbfc

��
: (25)

This is the Chern-Simons-like action for NMG [14]. The
second dreibein has now become an auxiliary field; by
eliminating it, we recover the higher-derivative action for
NMG.

As a consistency check, we now verify that the central
charge (17) of ZDG reduces in the above limit to the known
central charge of NMG. From Eqs. (7) and (8), we learn that

�ð	Þ¼�0þOð	Þ; �ð	Þ¼ 1� �0

2m2
	þOð	2Þ; (26)

where �0 is the cosmological constant in NMG as deter-
mined by the NMG field equations in terms of the cosmo-
logical parameter 	0. Now, we insert Eq. (24) into Eq. (17),
use the NMG relation 	0 ¼ �2

0=ð4m2Þ ��0 [2], and then

write �0 ¼ �1=‘2 to deduce that

cð	Þ ¼ �24�‘MP

�
1� 1

2‘2m2

�
þOð	Þ: (27)

The limit 	 ! 0 indeed gives the NMG central charge.
We recall that NMG has a parity-violating extension to a

‘‘general massive gravity’’ (GMG) model in which the two
spin-2 modes have unequal masses [2]. It would be natural
to suppose that ZDG is also a special case of a more general
parity-violating theory that propagates two massive spin-2
modes with unequal masses. By taking one mass to infinity,
we would then have a generalization of ‘‘topologically
massive gravity’’ [17] and hence of ‘‘chiral gravity’’ [18].
However, although it is not difficult to find generalizations
of ZDG that have a limit to GMG, those that we have
considered have additional degrees of freedom that only
go away in the GMG limit, so this remains an open problem.
In this Letter, we have presented a zwei-dreibein model

of 3D massive gravity that both incorporates earlier parity-
invariant models, such as NMG, and extends them in such a
way as to resolve the clash between bulk and boundary
unitarity in the context of the AdS/CFT correspondence.
Moreover, this is achieved without the need to fine-tune
parameters, so it is a result that is robust against the
quantum renormalization of parameters. As both bulk
and boundary unitarity are essential for quantum consis-
tency, the model constructed here may be the first candi-
date for a semiclassical approximation to a consistent
quantum theory of 3D massive gravity.
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