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We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both

associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an

effective mass for the scalar. Our results highlight the importance of understanding the structure of

spacetime in realistic, astrophysical black holes in scalar-tensor theories.

DOI: 10.1103/PhysRevLett.111.111101 PACS numbers: 04.50.Kd, 04.25.Nx, 04.70.�s

The most studied alternatives to general relativity (GR)
are scalar-tensor theories (S-T), with action [1,2]

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p
16�G

½Fð�ÞR�Zð�Þð@�Þ2þVð�Þ�þSm; (1)

where R is the Ricci scalar of the spacetime metric g��, �

is a scalar field, and Sm denotes the matter action. The
matter fields �m are minimally coupled to g�� and do not

couple to �. The functionals F and Z single out the theory
within the class, up to a degeneracy due to the freedom to
redefine the scalar (see, e.g., Ref. [3]). S-T theory is
expected to encapsulate some of the infrared phenome-
nology of quantum gravity candidates with extra scalar
degrees of freedom, such as the dilaton in string theory.
For instance, the low-energy limit of bosonic string theory
corresponds to F ¼ �, Z ¼ ���1. Brans-Dicke theory
[4] corresponds to F ¼ �, Z ¼ !0=�. S-T theories can
also be thought of as effective descriptions of a spacetime-
dependent gravitational coupling. They have received
widespread interest in cosmology, acting as a rather gen-
eral parametrization for dark energy [5].

Of particular interest is the phenomenology in the
strong-gravity regime. The reason is twofold. First, it can
provide insight on how extra fundamental fields affect the
structure of compact stars and black holes (BHs). Second,
the study of these objects and the confrontation with obser-
vations can yield important constraints on the theory itself
[6]. S-T theories seem to have screening mechanisms that
allow the scalar to go undetected in the Solar System [7,8],
so strong-gravity constraints can be the ideal way to dis-
tinguish them from GR.

In Ref. [9] it was shown that asymptotically flat BHs in
S-T theory that are stationary (as end points of collapse) are
no different than BHs in GR in electrovacuum. That is, the
scalar field settles to a constant and spacetime is described
by the Kerr-Newman family of solutions. This is not to say

that BHs cannot be used as probes in order to distinguish
S-T theory from GR: the spacetime might be the same, but
perturbations will behave differently as the two theories
have different dynamics [10]. In fact, the existence of a
scalar mode in the spectrum of perturbations around a Kerr
BH has been shown to lead to remarkable effects [11,12].
Compact stars in S-T have also been studied and an

unexpected phenomenon has been discovered: up to a
certain density, stars tend to prefer a ‘‘hairless’’ configura-
tion. However, above a threshold density ‘‘spontaneous
scalarization’’ occurs and the scalar develops a nontrivial
profile [13–16]. Here, we uncover a similar mechanism for
BHs with surrounding matter: when the matter configura-
tion is dense enough, the scalar acquires a negative effec-
tive mass squared and the BH is forced to develop scalar
hair. GR black holes are still solutions of the field equations
but are not entropically favored.
On the other hand, when the effective mass squared of

the scalar is positive and the BH spin is sufficiently large, a
different kind of instability can occur, due to superradiance
[17]. This instability does not lead to a non-GR solution,
but rather extracts rotational energy away from the BH,
which is forced to spin down.
Framework.—Equation (1) is said to be written in

the Jordan frame. Via the conformal transformation

gE�� ¼ Fð�Þg�� and the field redefinition 4
ffiffiffiffi
�

p
Fð�Þd� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3F0ð�Þ2 þ 2Zð�ÞFð�Þp
d�, one moves to the Einstein

frame where � is minimally coupled to gravity, but any
matter field �m is coupled to the metric Að�Þ2gE�� with

Að�Þ ¼ F�1=2ð�Þ. For what follows we neglect the poten-
tial Vð�Þ, as it is not crucial in our discussion. The field
equations in the Einstein frame read (setting hereafter @ ¼
c ¼ G ¼ 1)

GE
�� ¼ 8�½TE

�� þ @��@��� gE��ð@�Þ2=2�; (2)
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hE� ¼ �TEd½lnAð�Þ�=d�; (3)

where T
�E
� ¼ A4ð�ÞT�

� . Expanding around a solution �0

to first order in ’ � ���0 � 1, we obtain [12]

GE
��=ð8�Þ ¼ TE

�� þ @��0@��0 � gE��ð@�0Þ2=2
þ @��0@�’þ @�’@��0 � gE��@��0@

�’;

(4)

hE�0 þhE’ ¼ ��1T
E þ ð�2

1 � 2�2Þ’TE: (5)

Here, we assumed a general analytical behavior around
���0, Að�Þ=Að�0Þ ¼

P
n¼0�nð���0Þn.

As is obvious from Eq. (5), �1 controls the effective
coupling between the scalar and matter. Various observa-
tions, such as weak-gravity constraints and tests of viola-
tions of the strong equivalence principle, seem to require
�1 to be negligibly small when the scalar takes its asymp-
totic value [14,18,19]. This implies that a configuration in
which the scalar is constant and �1 � 0 is most likely to be
at least an approximate solution in most viable S-T theo-
ries. From here onwards we therefore set �1 ¼ 0, with the
understanding that in this spirit our analysis and results
appear to be rather generic when one restricts attention to
viable S-T theories.

With �1 ¼ 0 and a background GR solution all that
remains, to first order in ’, is the Klein-Gordon equation

½hE ��2
sðx�Þ�’ ¼ 0; �2

sðx�Þ � �2�2T
E: (6)

Thus, couplings of scalar fields to matter are equivalent to
an effective spacetime-dependent mass. Depending on the
sign of �2 and T

E, the effective mass squared can be either
positive or negative. Depending on the sign, two types of
instabilities, which we detail below, may drive the back-
ground solution to develop scalar hairs.

Spontaneous scalarization.—The most important result
of our analysis is that a matter distribution TE around BHs
forces the scalar field to be spontaneously excited and
develop a nontrivial configuration. In other words, even
though GR is a solution of the field equations, it may not be
the entropically preferred configuration. This phenomenon
is the direct analog of spontaneous scalarization first dis-
cussed for compact stars by Damour and Esposito-Farèse
[13–16]. At linear level, spontaneous scalarization mani-
fests itself as a tachyonic instability triggered by a negative
effective mass squared.

Let us first consider the case in which TE is spheri-
cally symmetric, TE ¼ TEðrÞ, and its backreaction on
the geometry is negligible. In this probe limit the back-
ground metric is a Schwarzschild BH. After a decom-
position in spherical harmonics ’ðt; r; �; �Þ ¼P

lme
�i!tYlmð�;�Þ�lmðrÞ=r, the scalar field then obeys
f2�00

lm þ f0f�0
lm þ ½!2 � fV ðrÞ��lm ¼ 0; (7)

V ðrÞ ¼ lðlþ 1Þ
r2

þ 2M

r3
þ�2

sðrÞ; (8)

where f ¼ 1� 2M=r and 0 � d=dr. This is an eigenvalue
equation for ! ¼ !R þ i!I, when the eigenfunctions
�lmðrÞ are required to satisfy appropriate boundary condi-
tions, viz. outgoing waves at spatial infinity, �lm � eþi!r� ,
and ingoing at the horizon, �lm � e�i!r� [20]. Because
’� e�i!t, unstable modes correspond to !I > 0, and they
decay exponentially at the boundaries. In this case, one can
make contact with and borrow some powerful results from
quantum mechanics. In particular, a sufficient condition for
this potential to lead to an instability is that

R1
2M Vdr < 0,

which yields the instability criterion [21]

2�2

Z 1

2M
TEdr >

2lðlþ 1Þ þ 1

4M
: (9)

The above is a very generic, analytic result. We have
checked numerically for specific models that the inequality
is nearly saturated for interesting matter configurations. For
instance, consider �2

s ¼ ��ðr� r0Þ�Mn�3ðr� r0Þ=rn
with � the Heaviside function. This matter distribution,
chosen quite arbitrarily to make our point, models the exis-
tence of an innermost-stable circular orbit close to the event
horizon by not allowing matter to be closer than r ¼ r0.
Spontaneous scalarization occurs for

��2

�

M
* �½2lðlþ 1Þ þ 1� ðn� 2Þðn� 1Þ

ðn� 4Þðn� 3Þ
�
r0
M

�
2
; (10)

where � ¼ �4�
R
r2TE is the mass of the spherical distri-

bution and its finiteness requires n > 4. Aminimummass�
is thus necessary in order for spontaneous scalarization to
occur. Binary pulsar experiments constrain�2 * �26 [14].
Using the maximum allowed value, we get �=M *
0:1ðr0=MÞ2, for l ¼ 0 and n � 1. Note that it is the combi-
nation �2T

E that regulates the instability. If some exotic
form of matter such that TE > 0 surrounds the BH, then the
instability occurs for positive values of �2, which are not
constrained by observations.
For consistency, the result above requires � � M in

order for Schwarzschild to be a background solution even
in the presence of matter. It might seem hard to be within
the range of validity of this approximation and still satisfy
the inequality (10). However, the instability is quite generic
and also occurs for consistent background solutions, as
we now show. Consider a spherically symmetric BH—
described by the Schwarzschild geometry—endowed
with a spherical thin shell at some radius R,

ds2 ¼ �hðrÞdt2 þ fðrÞ�1dr2 þ r2d�2; (11)

where hðrÞ ¼ fðrÞ ¼ 1� 2M=r for r > R and hðrÞ ¼
fðrÞ ¼ 1� 2Mint=r for r < R. This is an exact solution
of the field equations. Once the surface energy density �
and pressure P are specified, Israel’s junction conditions
[22] provide the internal massMint and the shell location R
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in terms of �, P, and M. In this case, the sufficient
condition (9) becomes

2�2ð2P� �Þ> 2lðlþ 1Þ þ 1

4Mint

þM�Mint

R2
> 0: (12)

Therefore, if �> 2P, scalarization may occur if �2 is
sufficiently negative whereas, if the strong energy condi-
tion is violated and �< 2P, the instability occurs for large
enough values of �2 > 0.

The above models consider spherically symmetric mat-
ter distributions, but the effect is very generic. By expand-
ing a generic matter distribution as �2

sðr; �; �Þ ¼P
lm�

2
slmðrÞYlmð�;�Þ, it is easy to show that the monopole

�00 decouples from the higher harmonics and satisfies

Eq. (7) with �2
s ! �2

s00=
ffiffiffiffiffiffiffi
4�

p
. We conclude that scalariza-

tion must occur at least at the level of the l ¼ 0 mode.
Finally, we found that spontaneous scalarization is active
also when the BH rotates [23].

Final state of spontaneous scalarization.—To under-
stand the development of the instability and the approach
to the final state, a nonlinear time evolution is mandatory.
However, interesting information on the final state can be
obtained by looking at stationary solutions of the field
equations with the same symmetries. Let us work out the
spontaneously scalarized final state for thin shell of matter
surrounding a BH in spherical symmetry. Spacetime is
described again by (11). For a zero-thickness shell, the
matter content is zero everywhere and the Klein-Gordon
equation can be integrated to yield �0 ¼ Q=ðr2 ffiffiffiffiffiffi

fh
p Þ.

The scalar charge Q can be determined as a function of
the matter density � and pressure P on the shell. The
solution for �0 implies that if there is a horizon (f ¼ 0)
inside the shell, regularity of the scalar field imposes � ¼
const inside the shell and a Schwarzschild interior.
Equation (2) reduces to

4�Q2 þ r2hðfþ rf0 � 1Þ ¼ 0; (13)

4�Q2 þ r2hð1� fÞ � r3fh0 ¼ 0: (14)

For a shell made of a layer of perfect fluid, the surface
stress-energy tensor reads SEab ¼ �uaub þ Pð	ab þ uaubÞ,
where 	ab denotes the induced metric and ua is the on-
shell four-velocity. The Israel-Darmois conditions allow
one to express the jump in the extrinsic curvature as a
function of the shell composition [22]. The strategy is to
integrate Eqs. (13) and (14) from infinity, with appropriate
boundary conditions, towards the shell, then use the match-
ing conditions to get across the shell and match onto a
Schwarzschild interior. A nonlinear solution thus con-
structed is shown in Fig. 1.

A perturbative analysis for small Q is perhaps more
illuminating. By defining h�1�2M=rþH and f � 1�
2M=rþ F, in the interior � ¼ const and H ¼ F ¼ C=r,
whereas in the exterior we have

�0 ¼ Q

rðr� 2MÞ ; F ¼ 2�Q2

Mr
log

�
r

r� 2M

�
; (15)

H ¼ � 2�Q2

M2r

�
2Mþ ðr�MÞ log

�
r� 2M

r

��
: (16)

We imposed asymptotic flatness, and M is the total
mass. The latter differs from the internal mass of the
Schwarzschild metric, whose horizon is located at rh �
2Mint ¼ 2M� C. At large distances, ��Q=r. In the
Jordan frame, this corresponds to a shell with an effective
scalar charge/ Q [23]. The scalar chargeQ is a function of
�, P and it is determined by the Klein-Gordon equation,
Q ¼ �1ð�� 2PÞ, where �1 is to be evaluated at the shell’s
location. Therefore, for a given coupling Að�Þ, the charge
Q is uniquely determined by the thermodynamical proper-
ties of the shell. Finally, for a given Q, the junction con-
ditions can be solved to get C and R in terms of � and P.
Once the matter content is specified, the equations above

determine unambiguously the scalar field and the metric. In
Fig. 1, we show the nonlinear solution for internal mass,
Mint � M� C=2, the shell radius R, and the Kretschmann
scalar K ¼ RabcdR

abcd at the BH radius as functions of the
scalar chargeQ. The difference to the perturbative solution
is not noticeable on the plot’s scale. The perturbative
solution is valid to OðQ2Þ, but the agreement is perfect
also for moderately large values of Q, where the structure
of the hairy BH can be very different from its GR
counterpart.
We have thus constructed nonlinear, hairy solutions of

S-T theories with a BH at the center. Because this is the
only spherically symmetric solution to Einstein equations
with a spherical matter shell, it must be the end state of the
instability of a Schwarzschild BH with the same Arnowitt-
Deser-Misner mass. It would be interesting to follow the
nonlinear time dependency of the instability and the dy-
namical approach to this kind of nonlinear solutions.
Superradiant amplification and instability.—When

�2
sðrÞ> 0, spontaneous scalarization does not occur.

However, a positive effective mass squared raises the

0.0 0.1 0.2 0.3
Q/M

0.0

0.5

1.0

1.5

Mint(Q)/Mint(0)

R(Q)/R(0)
Log10[K(Q)/K(0)]/6

σM=10
-3

, P=0.1σ

FIG. 1 (color online). The internal mass, Mint � M� C=2,
shell radius R, and Kretschmann scalar K ¼ RabcdR

abcd at the
horizon for a hairy BH as function of the scalar charge Q,
normalized by their value in GR, Q ¼ 0.
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interesting prospect that a ‘‘spontaneous superradiant
instability’’ is present for rotating BHs, similarly to the
case of massive Klein-Gordon fields [24–28]. These two
instabilities are different in nature and, in principle, lead to
two very distinct end states. The superradiant instability
requires an ergosphere and is expected to terminate in a GR
solution with constant scalar field and lower BH spin,
while spontaneous scalarization gives rise to a nontrivial
scalar profile even around static BHs.

We now show that spontaneous superradiant instabilities
are also a generic effect of S-T theories, and perhaps more
surprisingly that superradiant amplification of waves can
increase by several orders of magnitude in these theories.
For simplicity, we look for separable solutions of the Klein-
Gordon equation with ’ ¼ �ðrÞSð�Þe�i!tþim�, which
forces the matter profile to have the general form [23]

�2
sðr; �Þ ¼ �2

0 þ 2
F ð�Þ þ GðrÞ

a2 þ 2r2 þ a2 cos2�
: (17)

The term �0 plays the role of the canonical mass term of a
massive scalar, whereas�s is the effective mass.We get the
following coupled system of equations:

ðsin�S0Þ0
sin�

þ
�
a2ð!2��2

0Þcos2��
m2

sin2�
�F þ


�
S¼ 0;

�
d

dr

�
�
d�

dr

�
þ½K2��ðGþ r2�2

0þBÞ��¼ 0;

Where � ¼ r2 þ a2 � 2Mr, K ¼ ðr2 þ a2Þ!� am, B ¼

þ a2!2 � 2am!, and 
 is a separation constant, found
by imposing regularity on the angular wave function Sð�Þ.

For concreteness, let us focus on a specific case of
Eq. (17): �2

0 ¼ 0, F ¼ 0, G ¼ ��½r� r0�ðr� r0Þ=r3,
and start by analyzing superradiant scattering of monochro-
matic waves.We show in Table I the gain in flux as a result of
inputting a flux (Fluxin) at infinity, for selected values of �
and r0. Note that� / �2 in Eq. (6), and large positive values
of �2 are not constrained by observations. For small � one
recovers the standard results, with a maximum amplification
of 0.4% [17]. However, for certain values of r0, �, the
amplification factor can increase by 6 orders of magnitude
or more, making it a potentially observable effect.

We have also studied the full eigenvalue system to
search for instabilities, which correspond to !I > 0.
Results are summarized in Fig. 2. The most important
aspect to retain from our analysis is that the instability is
akin to the original BH bomb, in which a rotating BH is

surrounded by a perfectly reflecting mirror at r0 [17,26,29]:
for small r0 there is no instability, as the natural frequen-
cies of this system scale like 1=r0 and are outside the
superradiant regime ! 	 �H, with �H the BH angular
velocity. It is clear from Fig. 2 that this is a superradiant
phenomenon, as the instability is quenched as soon as one
reaches the critical superradiance threshold. At fixed large
r0=M, and for any sufficiently large �, the instability time
scale !�1

I is roughly constant. Again, in line with the
simpler BH bomb system, a critical � corresponds to a
critical barrier height which is able to reflect radiation
back. After this point, increasing � further is equivalent
to a further increase of the height of the barrier and has no
effect on the instability.
Spontaneous superradiant instability seems to be a ge-

neric feature [23]. We have also investigated matter pro-
files �2

0 � 0, F ¼ G ¼ 0 and �2
0 ¼ F ¼ 0, G ¼ �2r2

and they are equivalent or very similar to the well-known
massive scalar field instability [24–28]. However, the
ansatz (17) is not general enough and further investigation
is necessary in order to understand realistic configurations
such as accretion disks. In that case, methods such as those
used in Refs. [29–32] would be required.
Conclusions.—BHs surrounded by matter in S-T theo-

ries are generically subjected to two instabilities.
Spontaneous scalarization can occur when the effective
mass squared is negative, and it is a very generic effect
that affects GR solutions when there is sufficient matter on

TABLE I. The gain coefficient for scattering of scalar waves in
a matter profile G ¼ ��½r� r0�ðr� r0Þ=r3.

Fluxout=Fluxin � 1ð%Þ
r0 �¼500 �¼1000 �¼2000 �¼4000 �¼8000

5.7 0.441 0.604 1.332 9.216 5:985
 104

6.0 0.415 0.539 1.059 5.589 513.2

10 0.369 0.372 0.380 0.399 0.825

6 7 8 9 10
r0/M

0.0

0.2

0.4

0.6

ωRM, β=3x10
4

ωRM, β=3x10
5

ωRM, β=3x10
6

10
4ωIM, β=3x10

4

10
4ωIM, β=3x10

5

10
4ωIM, β=3x10

6

mΩH

a=0.99M

1×10
4

1×10
5

1×10
6

β

0.0

0.2

0.4

0.6

ωRM, r0=6M
ωRM, r0=8M

10
4ωIM,  r0=6M

10
4ωIM,  r0=8M

mΩH

a=0.99M

FIG. 2 (color online). Superradiant instability details for a
matter profile characterized by G ¼ �½r� r0��ðr� r0Þ=r3.
Top panel: modes as a function of r0 for fixed �. Bottom panel:
modes as a function of � for fixed r0. For large � the system
behaves as a BH enclosed in a cavity with radius r0. All curves
are truncated when the modes become stable.
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the outskirts of the event horizon. The spacetime then
spontaneously develops nontrivial scalar hair supported
on the exterior matter profile. When the effective mass
squared is positive, superradiant instability and/or impres-
sive amplification factors can occur. The effectiveness of
the instability depends on the matter profile, the spin of the
BH, and the specific S-T theory considered.

Our results raise a number of questions, two of which are
of particular interest and strongly motivate further
research: the dynamical development and final state of
these instabilities, and their relevance when it comes to
astrophysical BHs and potential observational imprints.
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042001 (1998).

[19] P. C. C. Freire, N. Wex, G. Esposito-Farèse, J. P.W.
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