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We describe a superconducting-circuit lattice design for the implementation and simulation of

dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1)

quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites

and the gauge fields are represented by two coupled microwave resonators on each link between

neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related

to string breaking effects shows that, despite the presence of decoherence in these systems, distinctive

phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art

technology in small superconducting-circuit arrays.
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The remarkable experimental progress reported in recent
years with superconducting quantum circuits (SQCs) has
made these systems one of the best platforms for control at
the level of single quanta [1–6]. While SQCs have been
mainly developed from the perspective of quantum comput-
ing, the strong nonlinearities and low loss rates of super-
conducting devices have inspired proposals and first
experimental efforts [7] to implement quantum simulators
[8] for spin and Hubbard-type models. Compared to atomic
and photonic systems, where many of these concepts were
developed first, a key advantage of superconducting devices
is that they allow engineering of quantum circuits as basic
modules, which can be wired up to design highly nontrivial
many-body couplings and dynamics. This makes SQCs a
promising platform to simulate latticemodelswith complex
interactions. One of the most interesting and challenging
applications along these lines is the implementation of a
quantum simulator for lattice gauge theories (LGTs) [9]. It
is the purpose of the present work to present designs for
SQCs as basic building blocks of LGTs, which can be
implemented with existing technology. We illustrate this
by analyzing a U(1) lattice model representing quantum
electrodynamics (QED) in one dimension (1D), and study
dynamical effects related to string breaking in a minimal
model of a few coupled lattice sites, which could serve as an
example for a first experimental realization.

Gauge theories, and LGTs in particular, play a central
role in both particle and condensed-matter physics, and a
quantum simulator of such models may provide new
insights in regimes not accessible to classical computation.
In particle physics, the standard model is formulated as a
gauge theory, where interactions between the fundamental
constituents of matter are mediated by gauge bosons.
Formulation as a LGT [10–12] has enabled a nonperturba-
tive framework, using, for example, Monte Carlo

simulations, although most problems concerning finite-
density phases and (time-dependent) nonequilibrium dy-
namics are beyond the scope of these techniques. In
condensed-matter physics gauge theories appear in frus-
trated spin systems and quantum spin liquids [13–16], and a
quantum simulator would give access to phases and dynam-
ics thus far out of reach.
In the lattice formulation of gauge theories, the matter

fields live on the lattice sites, while the gauge fields appear
as bosonic degrees of freedom on the links between neigh-
boring sites [see Fig. 1(a)]. A simple, although nontrivial
example of a LGT is the Schwinger model [17–19], rep-
resenting QED in 1D. This model was analyzed in recent
works discussing the implementation of U(1) LGTs with
cold atoms [20–29], and can be used as a starting point to
illustrate the building blocks for a quantum simulator of
gauge theories. To represent the gauge fields, we use the
language of quantum-link models (QLMs), which show
that the gauge fields can be expressed as spin degrees of
freedom [30–32]. The Hamiltonian of the quantum-link
version of the Schwinger model is

Ĥ Sch ¼ m
X
‘

ð�1Þ‘ ĉ y
‘ ĉ ‘ þ g

X
‘

ðŜz‘;‘þ1Þ2

� J
X
‘

ðĉ y
‘ Ŝ

þ
‘;‘þ1 ĉ ‘þ1 þ H:c:Þ: (1)

Here, ĉ ‘ is a matter-field operator denoting a (spinless)
fermion at lattice site ‘. The gauge field of this model is

represented by the spin operator Ŝ of a given value S ¼
1=2; 1; 3=2; . . . , and the z component corresponds to

the electric field between lattice sites, Ŝz‘;‘þ1 � Ê‘;‘þ1.

The simplification introduced by this formulation becomes
apparent in the fact that the electric flux can only take
discrete values associated with the possible spin states
for a given S. The first summand (mass term) in Eq. (1)
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describes staggered fermions, whose ground state should be
interpreted as a filled Dirac sea, and excitations amount to
the creation of a particle-antiparticle pair with mass gapm.
The second term should be interpreted as an electric-field
energy. Finally, the last term (kinetic energy) describes
hopping of fermions between two adjacent sites, which is

associated with a spin flip Ŝþ‘;‘þ1, i.e., a change of the

electric field on the link when the charge moves.
The U(1) gauge symmetry is captured as invariance

under local transformations of the matter and gauge

degrees of freedom, V̂y ĉ ‘V̂ ¼ ei�‘ ĉ ‘ and V̂yŜþ‘;‘þ1V̂ ¼
ei�‘ Ŝþ‘;‘þ1e

�i�‘þ1 , respectively. The transformation V̂ �Q
‘e

i�‘Ĝ‘ is generated by Ĝ‘ ¼ Ŝz‘ � Ŝz‘þ1 þ ĉ y
‘ ĉ ‘ þ

½ð�1Þ‘ � 1�=2 [33], where Ĝ‘ is a conserved quantity,

i.e., ½Ĝ‘;Ĥ Sch� ¼ 0. This condition implies that if we

initialize our system in an eigenstate of Ĝ‘, the dynamics

generated by Ĥ Sch will remain within the subspace of

states fj�ig with the same eigenvalue of Ĝ‘. In other words
(taking for convenience the zero-eigenvalue subspace),

gauge invariance implies the constraint Ĝ‘j�i ¼ 0.
This defines a gauge-invariant set of ‘physical’ states,
and corresponds to the lattice version of the Gauss law
~r � ~E� � ¼ 0, with � � ĉ y

‘ ĉ ‘ þ ½ð�1Þ‘ � 1�=2.
Superconducting-circuit implementation.—We now

describe how to implement the model (1) using a lattice

of coupled superconducting circuits. First, we notice
that a Jordan-Wigner transformation [34] allows us to

express the fermionic fields as two-level systems, ĉ ‘ ¼
e�i�

P
m<‘

ð�̂z
mþ1Þ=2�̂z

‘ and ĉ y
‘ ĉ ‘ ¼ ð�̂z

‘ þ 1Þ=2, where the

�̂�;z
‘ are Pauli operators, which for our nearest-neighbor

coupling does not generate long-range interactions
between spins. Second, for each link we consider two

resonators with bosonic operators â‘ and b̂‘þ1, which

encode a general spin Ŝ through the Schwinger represen-

tation Ŝz‘;‘þ1�ðây‘ â‘�b̂y‘þ1b̂‘þ1Þ=2 and Ŝþ‘;‘þ1 � ây‘ b̂‘þ1

[35]. In this case, the value of the spin is set by the total
number of excitations N per link, S ¼ N=2, which can be
initially prepared and measured in the experiment [36,37].
The representation of matter and gauge fields in terms of
spin and oscillator variables is summarized in Fig. 1(b) for
the case S ¼ 1. With these new variables the Schwinger
model (2) reads

Ĥ Sch ¼ m

2

X
‘

ð�1Þ‘�̂z
‘ þ

g

4

X
‘

ðây‘ â‘ � b̂y‘þ1b̂‘þ1Þ2

� J
X
‘

ð�̂þ
‘ â

þ
‘ b̂‘þ1�̂

�
‘þ1 þ H:c:Þ: (2)

As we will show now, this Hamiltonian can be simulated
using basic modules of SQCs. To this end, we follow the
structure of the building block introduced in Fig. 1(b),
where the spins on the lattice sites are simulated with
superconducting qubits, while the link between neighbor-
ing sites is composed of two coupled nonlinear LC circuits,
as shown in Fig. 1(c).
Let us now describe in detail the different circuit compo-

nents. For the sites we consider conventional super-
conducting qubits [1–6], which we model by a two-level

Hamiltonian Ĥ
site ¼ !q�̂z=2. Note that the presence of

higher, off-resonant qubit levels can slightly modify the
effective parameters derived below, but does not qualita-
tively change the resulting interactions [38]. A link in turn is
composed of two coupled LC circuits, each of them in
parallel with a Josephson junction to form a nonlinear
resonator. This basic element is described by the

Hamiltonian Ĥ
NLC¼Q̂2=ð2CÞþ�̂2=ð2LÞ�EJcosð�̂=�0Þ

[39–41], where �̂ and Q̂ are canonical flux and charge

variables obeying ½�̂; Q̂� ¼ i@, �0 is the magnetic flux
quantum, andEJ the Josephson energy. In the regime,where
flux fluctuations are small compared to �0, the cosine
potential can be expanded up to quartic order to obtain

Ĥ
NLC � !aâ

yâ��aðâyâÞ2, where â and ây are bosonic
annihilation and creation operators for electric excitations
(‘‘microwave photons’’) and typically !a �!q �
5–10 GHz. �a is the strength of the effective Kerr interac-
tion [42–44] and can take values up to several hundredMHz
within the validity of the above expansion.
To engineer the interactions of our model with indepen-

dent coupling constants, the two nonlinear LC resonators

FIG. 1 (color online). (a) Pictorial view of a 1D quantum-link
model, where the operators ĉ ‘ on even (odd) sites represent
matter (antimatter) fields and the spin operators Ŝ‘;‘þ1 resid-

ing on each link represent the gauge fields. (b) Equivalent
physical implementation, where two-level systems replace the
fermionic matter fields and two oscillators with a fixed total
number of excitations N encode a spin S ¼ N=2 on each link.
(c) Superconducting-circuit implementation. Neighboring super-
conducting qubits on the sites of a 1D lattice are connected via
two nonlinear LC resonators.
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(‘‘left’’ and ‘‘right’’) on each link are coupled via an addi-
tional Josephson junction with Josephson energy EJ and a
capacitance CJ [cf. Fig. 1(c)]. The total Hamiltonian for a
single link is then

Ĥ
link ¼ 1

2
~̂QC�1 ~̂Q

T þ X
�¼l;r

�̂2
�

2L�

� X
�¼l;r

EJ;� cos

�
�̂‘

�0

�

� EJ cos

�
�̂l � �̂r

�0

�
; (3)

where ~̂Q � ðQ̂l; Q̂rÞ, C is the capacitance matrix [38], and
EJ;� and L� denote Josephson energies and inductances as

shown in Fig. 1(c). As above, we expand the Josephson
terms up to quartic order and by keeping only near-resonant
terms we obtain a Hamiltonian of the form [38,45–47]

Ĥ
link ¼ !aâ

yâþ!bb̂
yb̂��aðâyâÞ2 ��bðb̂yb̂Þ2

��abâ
yâb̂yb̂þ Ĥ

nc
: (4)

Here â and b̂ are bosonic operators for quasilocalized exci-
tations of the left and right resonators, respectively, and !a

and !b are the corresponding mode frequencies. �a, �b,
and �ab denote the strengths of self- and cross-Kerr non-

linearities. Finally, Ĥ
nc

accounts for additional, gauge-

variant interactions of the form �âyâyb̂ b̂ , �âyâ â b̂
[38]. To suppress photon processes induced by Ĥ

nc
, we

will consider the conditions �a � �b � �ab=2, and
j!a �!bj � �a,�b,�ab. Amore detailed discussion and
a specific example showing how this can be done is pre-
sented in [38].

Finally, the coupling between sites and adjacent links is
realized by a small capacitance Cg, which for near-

resonant subsystems results in a Jaynes-Cummings

coupling Ĥ
�
‘ ¼ ��̂y

‘ ðâ‘ þ b̂‘Þ þ H:c: Altogether, the

Hamiltonian of the full circuit lattice takes the form

Ĥ micro ¼ P
‘Ĥ

site
‘ þ Ĥ

link
‘;‘þ1 þ Ĥ

�
‘ , and written in a

rotating frame reads

Ĥ micro � �

2

X
‘

ð�1Þ‘�̂z
‘ þ

g

4

X
‘

ðây‘ â‘ � b̂y‘þ1b̂‘þ1Þ2

þ �
X
‘

N̂‘ �W
X
‘

N̂2
‘ þ

X
‘

Ĥ
�
‘ : (5)

Herewe have regrouped the nonlinearities in Eq. (4) in terms

of the total photon number per link, N̂‘� ây‘ â‘þb̂y‘þ1b̂‘þ1,

and the difference Ŝz‘;‘þ1�ðây‘ â‘�b̂y‘þ1b̂‘þ1Þ=2, represent-
ing the discrete electric-field variable. The corresponding
interaction scales are given by W � ð�a þ�b þ�abÞ=4
and g � �ab ��a ��b, and � and � denote qubit and
resonator detunings from a common frequency offset,
respectively.

By identifying m � � the first line of Eq. (5) already
reproduces the mass term and the electric-field energy of

the QLM (1). To realize the gauge-invariant tunneling term
�J, we considerW � �, g, which restricts our model to a
subset of states with well-defined photon number per link,

N̂‘jc i ¼ N0jc i, since the addition or subtraction
of a photon is suppressed by an energy penalty �E� �
	ð�� 2N0WÞ �W. Furthermore, this allows us to treat

Ĥ
�
‘ perturbatively, which to second order gives

the coupling �J
P

‘ð�̂þ
‘ â‘b̂

y
‘þ1�̂

�
‘ þ H:c:Þ, with J¼

��2ð1=�Eþþ1=�E�Þ. By choosing an optimal detuning
� ¼ 2N0W and undoing the substitutions given by the
Schwinger and Jordan-Wigner mappings, we obtain
Eq. (1), with effective parameters m � �, J � �2�2=W,
and g defined above. For realistic values W=ð2�Þ �
200 MHz and �=ð2�Þ � 30 MHz, the resulting energy
scales of our model J, g, m are around a few MHz, which
are considerably larger than the typical decoherence rates
�10 kHz obtained with state-of-the-art superconducting
devices [48,49].
String breaking.—To illustrate, how the physics associ-

ated with the model of Eq. (2) can be probed in experi-
ments, here we focus on phenomena related to string
breaking [50–52]. This effect is of particular interest in
quantum chromodynamics, and by adopting the terminol-
ogy from this field, its counterpart in the present 1D model
can be intuitively understood as follows. Starting from the

‘‘vacuum’’ state with hŜz‘;‘þ1i ¼ 0, h�̂z
‘i ¼ ð�1Þ‘þ1, and

energy E0, a ‘‘quark-antiquark’’ pair can be created by
flipping the spin of two neighboring sites and—to conserve

the Gauss law—adding a flux hŜz‘;‘þ1i ¼ �1 on the link

between them. Assuming J 
 m, this state has an energy
E0 þ 2mþ g. By increasing the separation between the
matter-antimatter excitation and adding the corresponding
fluxes on each link, the energy of the resulting ‘‘string,’’
Estring ¼ E0 þ 2mþ gðL� 1Þ, increases linearly with the

number of lattice sites L from quark to antiquark.
Eventually, when L � 2m=gþ 3, it becomes energetically
more favorable to break the string and use the available
electric-field energy to create two additional particles,
forming two disconnected ‘‘mesons’’ (quark-antiquark
pairs with corresponding flux lines), with a total energy
Emeson ¼ E0 þ 4mþ 2g.
Figure 2(a) shows the spin configurations corresponding

to meson and string states, given a minimal setting with
L ¼ 4 sites. Since the matter and antimatter excitations at
the two ends of the chain represent the fixed quark-
antiquark configuration, the dynamics in this case involves
only a single unit cell consisting of two qubits and a single
link [as realized by the circuit shown in Fig. 1(c)]. In terms
of Schwinger bosons, the states correspond to jmesoni ¼
j "; na ¼ 1; nb ¼ 1; #i and jstringi¼j#;na¼2;nb¼0;"i. In
Fig. 2(b) we plot the relevant energy levels of the effective
model (1) as a function of the (tunable) mass m. For the
parameter regime considered above, we find a qualitatively
good agreement with the energies obtained directly from
the underlying microscopic model (5). Form=g 
 �1, the
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state jmesoni is an approximate eigenstate of the
Hamiltonian, which in an actual experiment can be pre-
pared by exciting the first qubit and initializing each reso-
nator with a single photon. As we increase m, the meson

and string states are hybridized, giving for m � g=2 an

anticrossing split by 2
ffiffiffi
2

p
J, and finally an eigenstate

jstringi for m=g � 1.
To study the feasibility of the proposal under realistic

conditions, we include the effect of a Markovian cavity and
qubit decay, and model the system dynamics by a master
equation:

d

dt
�̂¼�i½Ĥ ; �̂�þ	

2

X
‘

ð2�̂�
‘ �̂�̂

þ
‘ �f�̂þ

‘ �̂
�
‘ ; �̂gÞ

þ

X
‘

ð2â‘�̂ây‘ �fây‘ â‘; �̂gþ2b̂‘�̂b̂
y
‘ �fb̂y‘ b̂‘; �̂gÞ:

(6)

Here, �̂ is the density operator, 	 and 
 are qubit and

resonator relaxation rates, respectively, and for Ĥ we use
the microscopic model given in Eq. (5).
In Fig. 3 we show the results from a numerical simula-

tion of the experiment described above, where the state
jmesoni is initially prepared and converted into the state
jstringi by an adiabatic Landau-Zener sweep through the
avoided crossing. In Fig. 3(a) we have calculated the
fidelity h�fj�̂j�fi of finding the state j�fi � jstringi,
starting from j�ii � jmesoni, and performing a detuning
sweep of the form mðtÞ ¼ mi þ vt between m ¼ mi ¼
�2�� 30 MHz and m ¼ mf ¼ 2�� 50 MHz. In the

absence of dissipation the meson-to-string transition
probability follows the standard Landau-Zener formula
Pm!s ¼ 1� expð�2�J2=vÞ, and the fidelity decreases
monotonically as a function of the sweep velocity v.
This imposes a minimal experimental time scale T �
ðmf �mi=vÞ � J�1 to observe the transition. In the pres-

ence of losses, an upper bound is set by 
T, 	T 
 1, to
avoid the decay out of the initially prepared subspace.
Figure 3(a) shows that for realistic loss rates a suitable
intermediate time scale, corresponding to a sweep velocity
vopt=ð2�Þ � 2�� 100 MHz=�s, with transfer fidelities

FIG. 2 (color online). (a) Schematic representation of the
states jmesoni (left) and jstringi (right) for a lattice of L ¼ 4
sites. The spins (matter-antimatter excitations) at the end of the
chain are considered fixed and the gauge-invariant dynamics in
this minimal setting only involves a single unit cell with two sites
and one link as indicated by the dashed box. (b) Spectrum of the
microscopic Hamiltonian [Eq. (5)] and effective model [Eq. (1)]
for a single unit cell. The thick solid lines show the energies of
the states jmesoni and jstringi, which transform into each other
via an avoided crossing (symmetric and antisymmetric super-
positions of these states) at m � g=2. Other lines correspond to
spin combinations that for the boundary conditions defined in (a)
are not consistent with the Gauss law Ĝ‘jc i ¼ 0. The parame-
ters for this plot are �a ¼ �b ¼ 2�� 200 MHz. �ab ¼ 2��
420 MHz, � ¼ 2�� 30 MHz, W ¼ ð�a þ�b þ�abÞ=4 ¼
2�� 205 MHz. The energy splitting is given by 2

ffiffiffi
2

p
J, and

the effective parameters are jJj � 2�2=W ¼ 2�� 8:78 MHz
and g ¼ �ab ��a ��b ¼ 2�� 20 MHz.

FIG. 3 (color online). Parameters as in Fig. 2(c) and values in the legends in 2��MHz. (a) Fidelity of the state j�fi � jstringi
[eigenstate at m=ð2�Þ ¼ 50 MHz] after a Landau-Zener sweep from the state j�ii � jmesoni [eigenstate atm=ð2�Þ ¼ �30 MHz]. m
is changed proportionally to a constant speed v. (b) Meson-string transition, shown by the average value of the spin on the link,
choosing v=ð2�Þ ¼ 2�� 100 MHz=�s and starting from the state j�ii � jmesoni. The result from a Landau-Zener sweep compares
well with the static case of the microscopic and effective models (solid lines). Oscillations are present in the string phase due to the
nonadiabaticity of the sweep. (c) Gauss-law violation through the sweep, choosing v=ð2�Þ ¼ 2�� 100 MHz=�s, which compares
well with the static case (solid line). The effective model has, by construction, hĜ2i ¼ 0.
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�95% can be identified. Choosing this sweep velocity, we
study the onset of the meson-string transition by monitor-

ing the magnetization hŜzi at the middle link. This is shown
in Fig. 3(b), where, as predicted, we observe a crossover

from hŜzi ¼ 0 to hŜzi ¼ 1. Oscillations seen in the string
region are due to nonadiabatic effects arising from a finite
ramping time [53]. For current experimental parameters,
the transition can be clearly observed and compares well
with both the behavior predicted by the effective model (1)
and the microscopic Hamiltonian (5). In Fig. 3(c) we plot

the expectation value hĜ2i, which quantifies the violation

of the Gauss law Ĝj�i ¼ 0 across the transition. This

violation comes from the gauge-variant term Ĥ
�
present

in the microscopic Hamiltonian as well as the decay out of
the initial subspace given by the Lindblad terms in Eq. (6).

Starting from a finite value hĜ2i � 1% determined by Ĥ
�
‘

in the microscopic Hamiltonian, hĜ2i reaches a local maxi-
mum at the anticrossing. For larger decay rates the viola-
tion of the Gauss law eventually increases linearly with
time due to losses. However, the overall violation remains
sufficiently small for state-of-the-art decoherence rates and
required experimental ramping times.

Scalability.—The analysis presented above shows that
nontrivial phenomena, such us dynamics related to string
breaking, can already be observed within a single unit cell
composed of two sites and one link. Using this building
block, the simulation of this and other dynamical phe-
nomena can be successively scaled up to larger lattices.
For the example of string breaking, the string and themeson
states can be distinguished by measuring the average mag-
netization M � ð1=SðL� 1ÞÞP‘S

z
‘;‘þ1, which ideally

varies sharply from 0 to 1 across the transition and is also
robust with respect to individual decay processes. Note that,
while for larger systems the total loss rate increases as
�L ¼ 	Lþ 4
ðL� 1Þ, a decay out of the physical sub-
space can be detected by measuring the qubit and photon
populations at the end of the experiment. Therefore, for
moderate system sizes and experimental time scales
T � ��1

L , accurate quantum simulations can still be per-
formed by looking at postselected results [54]. By further
increasing the system size, the meson-string transition
eventually becomes nonadiabatic. In this case we expect a
string fragmentation [52] with competing length scales
determined by the Kibble-Zurek mechanism and the occur-
rence of random defects due to photon loss, respectively.
The role of dissipation inLGTs is by itself a challenging and
largely unexplored problem, which in the present context
can be addressed by adjusting the coherent and dissipative
time scales in a controlled manner.

Conclusions and outlook.—In summary, we have
described the implementation of the essential building
blocks of a superconducting quantum simulator for dynami-
cal lattice gauge field theories, where the basic physical
effects can already be analyzed with an experimentally

available number of coupled superconducting circuits [55].
The extension of this work to two-dimensional [56] and
non-Abelian interactions may eventually allow us to use
such superconducting architecture for addressing open prob-
lems present in condensed-matter and high-energy physics.
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