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We derive a set of algebraic equations, the so-called multipartite separability eigenvalue equations.

Based on their solutions, we introduce a universal method for the construction of multipartite entangle-

ment witnesses. We witness multipartite entanglement of 103 coupled quantum oscillators, by solving our

basic equations analytically. This clearly demonstrates the feasibility of our method for studying ultrahigh

orders of multipartite entanglement in complex quantum systems.
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Entanglement represents a fundamental quantum corre-
lation between compound quantum systems. Since the
early days of quantum physics, this property has been
used to illustrate the surprising consequences of the quan-
tum description of nature [1,2]. Moreover, entanglement
plays a fundamental role in various applications and
protocols in quantum information science [3–5].

In multipartite systems a separable state is a statistical
mixture of product states [6]. A quantum state is entangled,
whenever it cannot be represented in this form. Various
forms of multipartite entanglement are known [7–10]. The
most prominent and nonequivalent forms of entangled mul-
tipartite quantum states are the GHZ state [11] and the W
state [12], which have been generalized to so-called cluster
and graph states [13,14]. Another classification is given in
terms of partial and full (or genuine) multipartite entangle-
ment, for an introduction see, e.g., [4,5]. Beyond finite
dimensional systems, multipartite quantum entanglement
in continuous variable systems turns out to be a cumbersome
problem. Even in the case of Gaussian states, there exist
multipartite entangled states, which cannot be distilled [15].

High orders of multipartite entanglement are of great
interest, for example, in quantum metrology. Multipartite
entanglement has been shown to be essential to reach the
maximal sensitivity in metrological tasks [16]. In this
context, the quantum Fisher information has been used to
characterize the entanglement [17–19].

The detection of entanglement is typically done via the
construction of proper entanglement witnesses [20–22],
being equivalent to the method of positive, but not com-
pletely positive maps. Awitness is an observable, which is
non-negative for separable states, and it can have a negative
expectationvalue for entangled states. For different kinds of
entanglement, different types of witnesses have been
considered: bipartite witnesses [21,23], Schmidt number
witnesses [24,25], and multipartite witnesses for partial
and genuine entanglement [26–29]. A systematic approach
for witnessing entanglement in complex quantum systems
is missing yet.

Recently, we considered the construction of bipartite
entanglement witnesses with the so-called separability

eigenvalue equations [23]. We have shown that the same
equations need to be solved to obtain entanglement quasi-
probabilities, which are nonpositive distributions if and
only if the corresponding quantum state is entangled
[30]. Moreover, we have shown that the Schmidt number
witnesses can be obtained by solving the related Schmidt
number eigenvalue problem [25].
In the present Letter, we derive a set of algebraic equa-

tions, which yield the construction of arbitrary multipartite
entanglement witnesses. For these so-called multipartite
separability eigenvalue equations, we will study some
fundamental properties, which uncover the structure of
multipartite entanglement. Examples are given to witness
partial and full entanglement in multipartite composed
systems, for pure and mixed quantum states in discrete
and continuous variable systems.
In the following, we consider a composed Hilbert space

H ¼ H 1 � � � � �H N . It has been shown that, without
loss of generality, we could assume that the individual
subsystems are finite dimensional ones [31]. Let us consider
a partition I1 � � � IK of the index set I ¼ f1; . . . ; Ng. A
quantum state �̂ is separable for the given partition, if it
can be written as a classical mixture of product states [6]

�̂¼
Z
SI1:���:IK

dPða1; . . . ;aKÞja1; . . . ;aKiha1; . . . ;aKj; (1)

with P being a classical probability distribution and
SI1:���:IK

being the set of pure and normalized separable

states. If a quantum state %̂ cannot be written in the form of
Eq. (1), it is referred to as multipartite entangled.
A multipartite entanglement witness for the given parti-

tion is a Hermitian operator Ŵ, with

hŴi ¼ trð�̂ ŴÞ � 0; for all �̂ separable;

hŴi ¼ trð%̂ ŴÞ< 0; for at least one %̂:
(2)

Based on Refs. [23,32], it can readily be shown that any
witness can be presented in the form

Ŵ ¼ fI1:���:IK
ðL̂Þ1̂� L̂; (3)

PRL 111, 110503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 SEPTEMBER 2013

0031-9007=13=111(11)=110503(5) 110503-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.110503


where L̂ is a general Hermitian operator and the function

fI1:���:IK
ðL̂Þ denotes the maximally attainable expectation

value for separable states

fI1:���:IK
ðL̂Þ ¼ supfha1; . . . ; aKjL̂ja1; . . . ; aKig:

The supremum is taken over all ja1; . . . ; aKi 2 SI1:���:IK
.

Hence, we can formulate a necessary and sufficient
entanglement criterion being equivalent to the witness
criterion: A quantum state %̂ is entangled with respect to
the partition I1; . . . IK, if and only if there exists a

Hermitian operator L̂ such that

trð%̂ L̂Þ> fI1:���:IK
ðL̂Þ: (4)

This means that the mean value of L̂ exceeds the boundary
of mean values for separable states. A replacement

L̂ � �L̂ leads to a similar entanglement criterion, but with
the greatest lower bound (inf) instead of the least upper
bound (sup):

trð%̂ L̂Þ< inffha1; . . . ; aKjL̂ja1; . . . ; aKig: (5)

For both entanglement criteria, we have to solve the

following optimization problem for an observable L̂

G ¼ ha1; . . . ; aKjL̂ja1; . . . ; aKi ! optimum;

C ¼ ha1; . . . ; aKja1; . . . ; aKi � 1 � 0;
(6)

where G represents the function to be optimized, and C is
the normalization condition. For such an optimization
problem, we can apply the method of Lagrangian multi-
pliers. In our case, the optimization condition is

0 ¼ @G

@hajj � g
@C

@hajj ; for j ¼ 1; . . . ; K; (7)

where g is the Lagrangian multiplier and 0 is the null
vector in the subspace given by the partition I j. The partial

derivatives of G can be computed as

@G

@hajj ¼
@ha1; . . . ; aNjL̂ja1; . . . ; aNi

@hajj

¼ @½trI1
. . . trIK

ðL̂ja1; . . . ; aKiha1; . . . ; aKjÞ�
@hajj

¼ trI1
. . . trI j�1

trI jþ1
. . . trIK

ðL̂½ja1; . . . ; aj�1i
� ha1; . . . ; aj�1j � 1̂I j

� jajþ1; . . . ; aKi
� hajþ1; . . . ; aKj�Þjaji

¼ L̂a1;...;aj�1;ajþ1;...;aK jaji: (8)

The case L̂ ¼ 1̂ yields the derivatives of C. Let us also note
that we assumed that the indices of the sets I j are ordered

in a form that all elements of I j are larger then the

elements of I j0 for j > j0. This assumption is justified by

the fact that one can employ, without loss of generality, a

permutation of the Hilbert spaces H 1 . . .H N to order
them in the required form.
The Euler-Lagrangian optimization condition in Eq. (7)

can be reformulated for all j ¼ 1; . . . ; K as

0 ¼ L̂a1;...;aj�1;ajþ1;...;aK jaji � gjaji; (9)

where all eigenstates are normalized ones, hajjaji ¼ 1.

In addition, we may evaluate the value of g. We can do
this by multiplying Eq. (9) with hajj. This yields

g ¼ hajjL̂a1;...;aj�1;ajþ1;...;aK jaji
¼ ha1; . . . ; aKjL̂ja1; . . . ; aKi ¼ Goptimum: (10)

Hence, the Lagrangian multiplier corresponds to an

optimal expectation value of L̂ for separable states. In
conclusion of this derivation, we get an algebraic problem
whose solutions give all optimal expectation values.
Definition: MSE(value) equations.—The equations

L̂a1;...;aj�1;ajþ1;...;aK jaji ¼ gjaji for j ¼ 1; . . . ; K

are defined as the first form of the multipartite separability
eigenvalue, MSE(value), equations. The value g is denoted

as theMSE(value) of L̂, and the product vector ja1; . . . ; aKi
is the corresponding multipartite separability eigenvector,
MSE(vector).
As a final conclusion from this derivation we get

fI1:���:IK
ðL̂Þ ¼ supfg:g is MSE value of L̂g; (11)

and condition (5) is given by the infimum of all MSE
(values). This means that all multipartite entanglement
witnesses can be constructed from the solutions of the
MSE(value) equations,

Ŵ ¼ supfgg1̂� L̂: (12)

In case we consider finite Hilbert spaces (dimH <1),
we can replace sup and inf by max and min, respectively.
The derived MSE(value) equations play a fundamental

role for multipartite entanglement tests. They give the pos-
sibility to construct arbitrary entanglement witnesses on the
basis of the solution of an algebraic eigenvalue problem

of an observable L̂. Numerical and analytical methods—
originally developed to solve eigenvalue problems—can be
applied to handle the multipartite entanglement problem in
quantum physics in a systematic way. Before we apply our
method, let us formulate some fundamental properties of the
MSE(value) equations. The proofs are given in Secs. I–III of
the Supplemental Material [33].
Proposition: Second form of MSE(value) equations.—

The Hermitian operator L̂ has the MSE(value) g for the
MSE(vector) ja1; . . . ; aKi, if and only if it fulfills the
second form of the MSE(value) equations

L̂ja1; . . . ; aKi ¼ gja1; . . . ; aKi þ j�i;
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with ha1; . . . ; aj�1; x; ajþ1; . . . ; aKj�i ¼ 0 for all jxi 2N
i2I j

H i and j ¼ 1; . . . ; K. j

This proposition transforms the coupled system of eigen-
value equations, which has been defined in the first form of
the MSE(value) equations, into a single, but perturbed
eigenvalue problem. This second form yields several impli-
cations. For example, if an eigenvector is a product vector
ja1; . . . ; aKi, it is also an MSE(vector) with j�i � 0. In

addition, we also conclude that the operator L̂ yields a
true entanglement witness, cf. Eq. (2), if and only if the
eigenspace of the largest eigenvalue, does not contain a
product vector.

Proposition: Transformation properties.—A Hermitian

operator L̂ has a MSE(value) g for the MSE(vector)
ja1; . . . ; aKi. Then, the operator

L̂0 ¼ ðÛ1 � � � � � ÛKÞy½�11̂þ �2L̂�ðÛ1 � � � � � ÛKÞ;

with �1, �2 2 R n f0g and Ûj being unitary operations

acting locally on the partition I j, has the MSE(value)

g0¼�1þ�2g and the MSE(vectors) ja01; . . . ; a0Ki ¼
Ûy

1 � � � � � Ûy
Kja1; . . . ; aKi. j

This transformation allows us to consider a whole class
of witnesses, by solving the MSE(value) equation for a

particular operator L̂. In addition, the shifting of L̂ to L̂0
allows us to consider positive semidefinite operators only.
Note that the invariance of the MSE(values) under local
unitaries is of particular interest for the quantification of
multipartite entanglement, see, e.g., [4,5].

Proposition: Cascaded structure.—The nonzero solu-

tions of anN þ 1-partite operator L̂0 ¼ jc ihc j are identical
to the solutions of an N-partite operator L̂ ¼ trNþ1L̂

0. j
This property is quite surprising. It shows us that all

possible entanglement witnesses—based on positive semi-

definite operators L̂—of an N-partite system can be con-
structed by a few simple entanglement witnesses in a

N þ 1-partite system, L̂0 ¼ jc ihc j. An arbitrary rank of

L̂ can be achieved by choosing a state jc i with the same
Schmidt rank for the bipartition I1 ¼ f1; . . . ; Ng and I2 ¼
fN þ 1g, cf. Sec. III in [33].

In the following, we apply our method to analytically
derive multipartite entanglement tests. First, we may con-
sider witnesses for prominent examples of states in a three
qubit systems. In a second step, we apply our method to get
a multipartite entanglement test in a complex continuous
variable system.

Let us consider a generalized tripartite W state

jcWi ¼ �1j1; 0; 0i þ �2j0; 1; 0i þ �3j0; 0; 1i; (13)

with j�1j2 þ j�2j2 þ j�3j2 ¼ 1, which defines the observ-

able L̂ ¼ jcWihcW j. In Sec. IVof [33], we solve the MSE

(value) equation of L̂. This gives

ff1g:f2;3gðL̂Þ ¼ maxfj�1j2; j�2j2 þ j�3j2g;
ff2g:f1;3gðL̂Þ ¼ maxfj�2j2; j�1j2 þ j�3j2g;
ff3g:f1;2gðL̂Þ ¼ maxfj�3j2; j�1j2 þ j�2j2g;

ff1g:f2g:f3gðL̂Þ ¼ maxfj�1j2; j�2j2; j�3j2; g0g;

(14)

with

g0 ¼ 4j�1j2j�2j2j�3j2
ðj�1j2 þ j�2j2 þ j�3j2Þ2 � 2ðj�1j4 þ j�2j4 þ j�3j4Þ

:

Hence, we can formulate the following multipartite entan-
glement conditions: A quantum state �̂ is partially entan-

gled, if hcW j�̂jcWi> ff1g:f2g:f3gðL̂Þ. The corresponding

entanglement witness is

Ŵpart ¼ maxfg0; j�1j2; j�2j2; j�3j2g1̂� jcWihcW j: (15)

A quantum state �̂ is fully entangled, if hcW j�̂jcWi>
maxfff1g:f2;3gðL̂Þ; ff2g:f1;3gðL̂Þ; ff3g:f1;2gðL̂Þg. The correspond-

ing entanglement witness is

Ŵfull ¼ maxfj�ij2 þ j�jj2:i � jg1̂� jcWihcW j: (16)

In Fig. 1, we apply the considered witness to study the
entanglement of a noisyW state.
In a second step, a generalized GHZ state is given,

jc GHZi ¼ �0j0; 0; 0i þ �1j1; 1; 1i; (17)

together with j�0j2 þ j�1j2 ¼ 1, which yields an observ-

able L̂ ¼ jc GHZihc GHZj. From Sec. V of [33], we get the
maximal MSE(values)

ff1g:f2;3gðL̂Þ ¼ ff2g:f1;3gðL̂Þ ¼ ff3g:f1;2gðL̂Þ ¼ ff1g:f2g:f3gðL̂Þ
¼ maxfj�0j2; j�1j2g: (18)

Hence, a state �̂ is genuinely tripartite entangled, if
hc GHZj�̂jc GHZi>maxfj�0j2; j�1j2g, see Fig. 2. Note that
the corresponding witness
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FIG. 1 (color online). The entanglement test in Eq. (4) for a W
state mixed with white noise, �̂ ¼ pð1=8Þ1̂þ ð1� pÞjcWihcWj
�1 ¼ �2 ¼ �3 ¼ ð1= ffiffiffi

3
p Þ, is plotted for 0 � p � 1. The bound-

ary for partial or full separability is 4=9 or 2=3, respectively. The
expectation value hL̂i exceeds the boundary for full or partial
separability as long as the mixing parameter is p < ð40=63Þ or
p < ð8=21Þ, respectively.

PRL 111, 110503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

13 SEPTEMBER 2013

110503-3



Ŵ ¼ maxfj�0j2; j�1j2g1̂� jc GHZihc GHZj; (19)

cannot discriminate between partially and fully entangled
states, see Eq. (18), which is possible for the generalized
W-state projection in the previous example.

As a proof of principle, we are going to test multipartite
entanglement of a continuous variable system. Our con-
sidered example is a system of N coupled harmonic oscil-
lators. The observable we are using to verify entanglement

is the total energy of this system, L̂ ¼ Ĥ,

Ĥ ¼ XN
j¼1

� ~̂p2
j

2m
þm!2 ~̂r2j

2

�
þ �

4

XN
j;j0¼1

j ~̂rj � ~̂rj0 j2; (20)

where � denotes the coupling strength of the interaction, ~̂rj

the position and ~̂pj the momentum operator. Let us note

that we considered an even more general case in Sec. VI of
[33]. For the partition I1; . . . ; IK, we get the smallest MSE
(value) of the Hamiltonian as

E½I1; . . . ;IK� ¼ 3

2
@!

XK
j¼1

�
½Nj � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

�

m!2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½N � Nj� �

m!2

r �
; (21)

where Nj ¼ jI jj is the number of subsystems in I j. The

resulting witness reads as

ŴI1;...;IK
¼ E½I1; . . . ; IK�1̂� Ĥ: (22)

In the special case K ¼ 1 (I1 ¼ I), we get the true
ground state energy of the system,

E½I� ¼ 3

2
@!

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

�

m!2

r
ðN � 1Þ þ 1

�
: (23)

In case of full separability, K ¼ N (I j ¼ fjg), we have a

minimal energy of

E½f1g; . . . ; fNg� ¼ 3

2
@!N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½N � 1� �

m!2

r
: (24)

In Fig. 3, we plotted the corresponding entanglement test
based on Eq. (5), for N ¼ 103 interacting oscillators. For

the witnessing by the total energy Ĥ, no information about
the structure of the quantum states is needed.
In conclusion, we have derived an algebraic set of

equations to construct arbitrary entanglement witnesses.
We studied some fundamental properties of these equa-
tions. For example, they are invariant under local unitary
transformations and have a cascaded structure. The latter
allows us to deduce all entanglement witnesses from
elementary projections. Our method enables us to use all
known procedures for solving eigenvalue problems to con-
struct entanglement witnesses. We applied our method to
analytically identify full and partial entanglement of gen-
eralized, noisy GHZ andW states. Moreover, we witnessed
multipartite entanglement for a system of 103 interacting
oscillators, by analytical computation of the energetic
boundaries of separable states. This demonstrates the
feasibility of our method for studying ultrahigh orders of
multipartite entanglement, which are of fundamental inter-
est for understanding the transition from the microscopic to
the macroscopic world.
The authors are grateful to D. Pagel for helpful com-
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[5] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
[6] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[7] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.

Phys. 80, 517 (2008).
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Rev. A 85, 022321 (2012).

[19] R. Krischek, C. Schwemmer, W. Wieczorek, H.
Weinfurter, P. Hyllus, L. Pezzé, and A. Smerzi, Phys.
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