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At an intermediate activation level, striated muscle exhibits autonomous oscillations called SPOC, in

which the basic contractile units, sarcomeres, oscillate in length, and various oscillatory patterns such as

traveling waves and their disrupted forms appear in a myofibril. Here we show that these patterns are

reproduced by mechanically connecting in series the unit model that explains characteristics of SPOC at

the single-sarcomere level. We further reduce the connected model to phase equations, revealing that the

combination of local and global couplings is crucial to the emergence of these patterns.
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Striated muscle is a biological force generator com-
prised of a highly periodic pattern of microstructures
[Fig. 1(a)]. A basic structural unit is a half-sarcomere
(for simplicity, here we call it a sarcomere), which is a
barrel-like structure of 1–2 �m in size. The sarcomeres are
connected in series to form a linear fiber named a myofi-
bril. The contraction of each sarcomere occurs by the
relative sliding of a set of two filaments, named the thick
(myosin) and the thin (actin) filaments, which extend from
viscoelastic proteinaceous structures, called theM line and
the Z line, respectively [Fig. 1(b)]. Catalytic myosin
‘‘head’’ domains extending from the thick filament bind
to the adjacent thin filament to form ‘‘cross bridges’’ [1,2]
and generate the sliding force between the two filaments
using the energy of ATP hydrolysis.

The force-generating activity of each sarcomere is, in
general, controlled by the concentration of free Ca2þ: the
sarcomeres develop force at high and relax at low Ca2þ
concentrations. On the other hand, under fixed intermediate
activation conditions, such as at pCa� 6:0, a remarkable
phenomenon, a spontaneous oscillatory contraction termed
SPOC[3] occurs in both skeletal [4] andcardiacmuscles [5,6].
During SPOC, each sarcomere repeats cycles of submicron-
sized length oscillations that are highly stable and comprised
of slow shortening and rapid lengthening phases, associated
with, respectively, the active force development and relaxa-
tion. The pattern of oscillation depends on several physical
parameters, such as the number of sarcomeres in themyofibril
and the level of activation [3–6]. The fact that SPOC occurs
at the fixed chemical conditions suggests that the mecha-
nical property of sarcomeres and local mechanical coupling
between the sarcomeres play a crucial role [7].

The SPOC pattern is also affected by the external
loading. When the load is maintained constant (isotonic
condition), the oscillatory phase of each sarcomere is syn-
chronized in phase [8]. Under auxotonic conditions, where
the load is applied by the external spring [Fig. 1(a)], clear

traveling (metachronal) waves along the myofibril are
observed [3] [Fig. 1(d)]. When the total myofibril length is
held constant (isometric condition), the traveling wave
tends to be split into several parts [9] [Fig. 1(e)]. In some
cases, the out-of-phase synchronization is observed
[Fig. 1(f)]. These properties suggest that the global coupling
via external load could also be essential. However, the
consequences of the local and global couplings between
sarcomeres remain largely uncharacterized.
There exist several theoretical models describing SPOC

[10–13] that reproduce important features of sarcomere
oscillation. The realistic model proposed by Smith and
Stephenson [13] is based upon the elasticity of titin, a
fibrous protein that connects the end of the thick filament
and the Z line. However, our experiments demonstrate that
titin is not essential [3]. Other models are either abstract
[10] or assume inertia of the external spring or friction from
medium [11,12], the contribution of which is in fact very
small compared to active and elastic forces. Moreover,
more complex and realistic properties of SPOC as
described above remain fully unexplained. We recently
constructed a unit sarcomere model that can recapitulate
the main characteristics of SPOC, including its sawtooth
waveform and the phase diagram comprised of relaxation,
contraction, and SPOC states [3,14]. In this Letter, we
develop a mechanistic model of myofibrils by connecting
the unit model and show that it can reproduce various
oscillatory patterns of sarcomeres.
The unit model [14] is based on the following three

principles: (i) Myosin heads stochastically and indepen-
dently attach to or detach from the adjacent thin filament
(two-state model), and the transition rates depend on the
distance between the two filaments, i.e., the lattice spacing
[15] [Figs. 1(b) and 1(c) and Eq. (1)]; (ii) the attached
heads generate the active sliding force and, simultaneously,
the friction [16], and the sum of these two forces is
balanced with the externally applied load [Eq. (2)];
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(iii) the force balance in the short axis perpendicular to the
myofibril’s long axis is also taken into account [Eq. (4)].
[For more details on (ii) and (iii), see Supplemental
Material, Text 1 [17]]. Since the parameters of the unit
model describe the fundamental properties of the sarco-
mere structure, we can easily extend it to the myofibril
model:

dPi

dt
¼ �ðdiÞð1� PiÞ � �ðdiÞPi: (1)

Equation (1) is the time evolution equation for the
fraction of myosin heads attached to the thin filament,
Pi, which includes both the active force-generating state
and the attached state that only contributes to passive force
generation. Here, the subscript i denotes quantities of the
ith sarcomere. Let the total number of sarcomeres be N.
We assume that the attachment and detachment rates, �
and �, depend on the lattice spacing di of each sarcomere
and take the forms �ðdiÞ ¼ ��1ðdi � d0Þ�ðd0 � diÞ and
�ðdiÞ ¼ �0, where d0 and �0 are positive constants and
�ðxÞ is the Heaviside function defined as�ðxÞ¼1 for x>0
and 0 otherwise. The slope of �ðdÞ, �1, represents the
level of activity of a myofibril, which in a physiological
situation can be controlled by Ca2þ concentration: �1 ¼ 0
corresponds to full relaxation, whereas sufficiently large
�1 corresponds to full activation.

The force balance along the long axis of the myofibril is
given by

a
�i

s0
Pi � �m

�i

s0
Pi

d�i

dt
� Fex ¼ 0; (2)

where �i is the length of overlap between the thick and thin

filaments, which can be described as SLi ¼ SLð0Þ � �i

(SLi is the length of the ith sarcomere and SLð0Þ is the
length at no overlap). Here, �iPi=s0 is the total number of
cross bridges, and s0 is the interval between the adjacent
myosin heads along each thick filament. The first and
the second terms in Eq. (2) represent, respectively, the
averaged active sliding force and the passive friction force
generated by cross bridges [16], where a and �m are
positive constants (see the Supplemental Material, Text 1
for details [17]). All sarcomeres bear the same external
force Fex because they are connected in series and both
their inertia and the friction between sarcomeres and the
surrounding medium (water) are negligible compared to
the forces considered here. Whereas the form of Fex

depends on the type of the external load (isotonic, auxo-
tonic, or isometric), it is expressed as

Fex ¼ F0 þ K
XN
i¼1

ð�i � ��Þ: (3)

Here, F0 is a given constant force, and �� is a stationary
solution of Eqs. (1), (2), and (4) for �i at Fex ¼ F0. K is a
spring constant of the external spring, and the position of

one end of the spring X0 is given as X0¼NðSLð0Þ� ��Þþ
F0=K. The cases ofK!0, a finiteK, andK ! 1 in Eq. (3)

(a)

(b)

(d) (e) (f)

FIG. 1 (color). Schematic representation of a myofibril and a half-sarcomere. (a) Half-sarcomeres are connected alternatively in
series across the M and Z lines. (b) The thick and thin filaments face each other and slide past one another during contraction.
(c) Cross-sectional view of the overlapping zone of the thick and the thin filaments under the relaxing conditions. The lattice spacing,
lrð�Þ, is that at equilibrium in the absence of force-generating cross bridges. lm is an average natural length of the myosin head
thermally fluctuating without attachment to the thin filament. (d), (e), (f) Representative patterns of SPOC waves—the traveling wave
(d), the disrupted traveling wave (e), and the out-of-phase synchronization (f). The corresponding movies and experimental conditions
are shown in the Supplemental Material, Movie 1 and Text 2, respectively [17].
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correspond to the isotonic, auxotonic, and isometric
conditions, respectively.

The force balance along the short axis of a myofibril is
given by

krðlrð�iÞ � diÞþ kmPi

�i

s0
ðlm � diÞ

� �d

ddi
dt

þ Vðdi�1; di; diþ1Þ ¼ 0: (4)

The first term is the force generated by the filament
lattice. We assume that the lattice has a linear stiffness kr
and generates elastic force as it separates from the equi-
librium spacing lr attained under the relaxing conditions
[Fig. 1(c)]. It has been experimentally established that the
interfilament distance at the equilibrium attained under
the relaxing conditions decreases on increasing SL [18];
therefore, we simply put lrð�iÞ ¼ lr0 þ lr1�i with positive
constants lr0 and lr1. The second term is the average force
exerted by cross bridges, approximated by the elastic force
produced by a linear spring with spring constant km and
natural length lm (for more details, see the Supplemental
Material, Text 1 [17]). The third term �dddi=dt is the
friction force due to the viscoelasticity of the filament
lattice; �d is assumed to be small.

The function V defines the strength of the interaction
between the adjacent sarcomeres through the lattice spac-
ing. By regarding the sarcomeres as being coupled mutu-
ally through the elastic springs with stiffness kMZ and
assuming that the mechanical properties of M and Z lines
are the same, we take the following form of V:

Vðdi�1; di; diþ1Þ ¼ kMZððdi�1 � diÞ þ ðdiþ1 � diÞÞ: (5)

Summarizing all the facts noted above, Eqs. (1), (2),
and (4) are rewritten in a concise form:

d

dt

Pi

�i

di

0
BB@

1
CCA¼

�ðdiÞð1�PiÞ��ðdiÞPi

ða�iPi�F0s0Þ=�m�iPi

ðkrðlrð�iÞ�diÞþ kmPi�iðlm�diÞ=s0Þ=�d

0
BB@

1
CCA

þ kMZ

0

0

ðdiþ1þdi�1� 2diÞ=�d

0
BB@

1
CCA

þK

0P
N
j¼1ð ����jÞs0=�m�iPi

0

0
BB@

1
CCA: (6)

This equation includes both local and global couplings.
Indeed, the second and third terms on the right-hand
side become, respectively, the second derivative and the
integration terms in some continuous limits. If we put
N ¼ 1, kMZ ¼ 0, K ¼ 0, and �d ! þ0, the connected
model comes to the unit model.

The unit model shows supercritical Hopf bifurcation with
the control parameters�1 (activation level) andF0 (constant

external force) [14]. If we set�1 andF0 to any values within
the oscillation region, aside from the vicinity of the bifur-
cation points, the system undergoes auto-oscillations show-
ing sawtooth waveforms. In the subsequent analysis we
use the values ð�1; F0Þ ¼ ð19; 20Þ, but any set of values
within the parameter region of the auto oscillation yields
essentially the same results (for the units of time and length,
see the Supplemental Material, Table 1 [17]).
In the connected model [Eq. (6)], the additional control

parameters are N and K. We take the Neumann boundary
conditions expressed as d0 ¼ d1 and dNþ1 ¼ dN . The
initial condition is described in the legend of Fig. 3. The
simulation time is much longer than the oscillation period
to identify the final state of the system. If the final state is
stationary, the phase of the ith sarcomere �i is written as

�i ¼ !tþ �̂i, with constants ! and �̂i. We term �̂i ‘‘the
relative phase difference’’, and its profile identifies the type
of the oscillation pattern. Figure 2 shows different oscil-

lation patterns (the corresponding spatial profiles of �̂i are
shown in the Supplemental Material, Fig. 1 [17]).
The phase diagram for the oscillation patterns against N

and K (Fig. 3) reveals several significant features. At small
K (the isotonic condition) the oscillatory units are in-phase
synchronized, which is consistent with the experimental
results [8]. At K greater than the characteristic value K�,
this in-phase synchronization becomes unstable, and trav-
eling waves emerge [Fig. 2(b)]. Since the locally coupled
identical and linearly connected oscillators do not show
traveling waves under Neumann boundary conditions
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FIG. 2 (color). Examples showing typical spatiotemporal pat-
terns of SL oscillations. (a), (b), (c), and (d) show, respectively,
in-phase synchronization, traveling waves, disrupted traveling
waves, and out-of-phase synchronization. The values of N and K
used in each simulation are N ¼ 24 and K ¼ 0:01, 0.18, 0.7,
3.75, respectively, and the values of the other parameters are
indicated in the legend of Fig. 3. It is to be noted that the SPOC
period largely depends on �m as shown in Eq. (2), that is, the
larger the value of �m, the longer the SPOC period (see Fig. 8A
in [14] for model simulation, and Figs. 3 and 4 in [3] for
experimental results). The movies are shown in the
Supplemental Material, Movie 2 [17].
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[19], the appearance of traveling waves may be due to the
contribution of global coupling. As K increases, a different
oscillatory pattern is observed, which we call ‘‘the disrupted
traveling waves’’ [Fig. 2(c)]. Its characteristic is the
existence of finite phase gaps between the traveling wave
domains [Fig. 2(c) and see Supplemental Material, Fig. 1(c)
[17]]. To the best of our knowledge, this oscillatory pattern
has never been reported before in the system of coupled
identical oscillators. As K increases further, we enter the
region of out-of-phase oscillation [Fig. 2(d)] and then con-
traction region (without oscillation) at any N (Fig. 3). The
connected model predicts the existence of nonstationary

states at small N, which should be experimentally con-
firmed. With the exception of the yellow region in Fig. 3,
all types of oscillatory patterns have been experimentally
observed [3]. Several of those are shown in Figs. 1(d)–1(f),
and the Supplemental Material [17].
To evaluate the results of numerical simulations of

Eq. (6), we reduce the connected model to phase equations
by means of the standard reduction method [20,21]. Let

ðPð0ÞðtÞ; �ð0ÞðtÞ; dð0ÞðtÞÞ be the T-periodic solution of Eq. (6)
for kMZ ¼ 0 and K ¼ 0, and �iðPi; �i; diÞ be the phase of
the ith sarcomere, satisfying d�i=dt ¼ !0 ¼ 2�=T in the
absence of coupling [20,21]. The reduction theory states
that if the interactions between the oscillatory units are
sufficiently weak, the evolution equation of the coupled
system is written only in terms of �’s. Hence,

d�i

dt
¼ !0 þ kMZðBð�i ��iþ1Þ þ Bð�i ��i�1ÞÞ

þ K
XN
j¼1

Að�i ��jÞ: (7)

A and B are coupling functions given by Að�Þ ¼ ð1=TÞ�R
T
0 dtZ2ðtÞð �� � �ð0Þðt � �=!0ÞÞs0=�m�

ð0ÞðtÞPð0ÞðtÞ and

Bð�Þ ¼ ð1=TÞ RT
0 dtZ3ðtÞðdð0Þðt � �=!0Þ � dð0ÞðtÞÞ=�d,

where Z2ðtÞ ¼ @�=@�j0 and Z3ðtÞ ¼ @�=@dj0, with the

symbol �j0 denoting their values at ðP; �; dÞ ¼
ðPð0ÞðtÞ; �ð0ÞðtÞ; dð0ÞðtÞÞ. The phase sensitivity Z in the inte-
grands of A and B are numerically calculated from the
Malkin theory [22]. Equation (7) shows that only the
relative coupling strength K=kMZ and the two coupling
functions A and B determine the final state of Eq. (6). The
explicit forms of A and B for the case ð�1; F0Þ ¼ ð19; 20Þ
are given in Fig. 4. The signs of B0ð0Þ (negative) and A0ð0Þ
(positive) indicate that with respect to small phase differ-
ences the local interaction is ‘‘attractive’’ and the global
interaction is ‘‘repulsive.’’ This result reflects that the lattice
spacing in the adjacent sarcomeres tends to be equal and the
external spring tends to keep the total myofibril length
constant. To see how the value of K�, above which the
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FIG. 3 (color). Phase diagram of the SL oscillation patterns in
the steady state under auxotonic conditions obtained from the
connected model. Abscissa, the total number of sarcomeres, N.
Ordinate, the ratio of the spring constant of the external spring, K,
to the stiffness of the Z (or M) line, kMZ, KN

3=kMZ. The color
region indicates the steady state of SL: in-phase synchronization
(white), traveling wave (blue), disrupted traveling wave (red), out-
of-phase synchronization (green), nonstationary (yellow), and con-
traction without oscillation (black). Typical oscillation patterns
corresponding to themarkers (a)–(d) are shown inFig. 2. In general,
the final state depends on the initial conditions (e.g., SLi and its
distribution), the dependence ofwhich is indicated by the two-color
circles where the proportion of each color indicates the probability
of the appearance of the two states. The initial conditions used here
are given by adding random numbers � 2 ½�0:0001; 0:0001� to a
stationary solution ð �P; ��; �dÞ ¼ ð0:18; 1:08; 25:1Þ. When the initial
randomness is increased to, for example, � 2 ½�0:01; 0:01�, the
contraction region (black) at larger N values becomes the out-of-
phase oscillations (green), while the other states are essentially
unaltered. c� is logð��2B0ð0Þ=A0ð0ÞÞ. The parameters are �1 ¼
19, F0¼20, �0¼20, kMZ¼0:5, �d¼0:0005, km ¼ 1, s0 ¼ 0:01,
lm ¼ 23, kr ¼ 60, �m ¼ 1:5, d0 ¼ 25:3, SLð0Þ ¼ 3:6, lr0 ¼ 23,
lr1 ¼ 2:53, and a ¼ 1, which are nondimentionalized such that km
the force and length along the short axis (1 ða:u:Þ nm�1) and a the
force along the long axis (1 pN) are unity. In addition, the unit time
is chosen as 1 s, and the unit lengths for the short and long axes are
chosen as 1 nm (for d, lm, and lr) and 1 �m (for s0 and SL), resp-
ectively. (For more details see the Supplemental Material, Table 1
[17].) The phase diagram is basically insensitive to the choice of the
parameter values except that the disrupted traveling waves disap-
pear when the parameters approach the Hopf bifurcation points.
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in-phase state is destabilized, is determined and how the
traveling waves arise forK>K�, we take a continuous limit
in Eq. (7) assuming that N is infinitely large. Introducing

x ¼ i=N, �ðx; tÞ ¼ �iðtÞ, k̂MZ ¼ kMZ=N
2 and K̂ ¼ KN

into Eq. (7), we obtain

@�

@t
¼ !0 þ k̂MZ

�
�B0ð0Þ @

2�

@x2

�

þ K̂
Z 1

0
Að�ðx; tÞ ��ðx0; tÞÞdx0; (8)

wherewe expand the local coupling in terms of x derivatives
of � up to the leading term. ð@�=@xÞ2 has been dropped
because jB00ð0Þj � jB0ð0Þj. Linearizing Eq. (8) in �

gives @�=@t ¼ ð!0 þ K̂Að0ÞÞ þ k̂MZð�B0ð0Þ@2�=@x2Þ þ
K̂A0ð0Þð�ðx; tÞ � R

1
0 �ðx0; tÞdx0Þ, from which we obtain

the critical valueK� ¼ ��2kMZB
0ð0Þ=N3A0ð0Þwith the first

destabilized mode cos�x. The value of K� is in
good agreement with that of the numerical simulations of
Eq. (6) for large N (Fig. 3). To find the stationary state for

K >K�, we write �ðx; tÞ as �ðx; tÞ ¼ !tþ �̂ðxÞ and
substitute it into Eq. (8). This gives an integro differential

equation for �̂: @2�̂=@x2 ¼ ½K̂ R
1
0 Að�̂ðxÞ � �̂ðx0ÞÞdx0 þ

ð!0 �!Þ�=k̂MZB
0ð0Þ. To understand qualitatively the nature

of the stationary solution of this equation, we tentatively put
Að�Þ ¼ sin� preserving the repulsiveness of A. Then, the
above equation becomes equivalent to the equation of mo-
tion for a pendulum under gravitational force, if we regard x

as time. ! is given as ! ¼ !0 and �̂ðxÞ is given as the
inverse of an elliptic function that is a monotonic function of
x, implying a traveling wave. In the real case ofA containing
higher harmonics, the solution is more complicated, but
qualitatively remains the same: ! (>!0) is uniquely deter-

mined, and �̂ðxÞ is a monotonic function of x [23].
In the present model, we assumed that the cross bridge is

an independent force generator. Recently, Plaçais et al.
reported that the actomyosin system composed of a small
number ofmolecules can oscillate spontaneously under load-
ing [24], suggesting that the actomyosin complexes function
cooperatively [25]. Thus, it will be worth studying whether
the cooperativity is involved in the finemechanism of SPOC.

Here, we have demonstrated that the system where basic
oscillatory units are connected in series has the local-
global coupling, producing various oscillation patterns.
One point to be emphasized is that the common force
acting on each unit works as a ‘‘repulsive global’’ coupling,
and this type of interaction enhances the inhomogeneity of
the system. In SPOC, this effect breaks the spatial
uniformity of the system and, with the attractive local
coupling, produces traveling or disrupted traveling waves.
In the field of coupled oscillators, several studies [26]
examined simultaneous local and attractive global cou-
plings. Our observation that the mechanical coupling can
as well produce repulsive global coupling may stimulate
the investigation of this type of coupled systems.
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Arch. 433, 1 (1996).
[7] Y. Shimamoto, M. Suzuki, S. V. Mikhailenko, K. Yasuda,

and S. Ishiwata, Proc. Natl. Acad. Sci. U.S.A. 106, 11 954
(2009).

[8] K. Yasuda, Y. Shindo, and S. Ishiwata, Biophys. J. 70,
1823 (1996).

[9] N. Okamura and S. Ishiwata, J. Muscle Res. Cell Motil. 9,
111 (1988).

[10] F. Julicher and J. Prost, Phys. Rev. Lett. 78, 4510 (1997).
[11] S. Gunther and K. Kruse, New J. Phys. 9, 417 (2007).
[12] A. Vilfan and T. Duke, Phys. Rev. Lett. 91, 114101 (2003).
[13] D. A. Smith and D.G. Stephenson, Biophys. J. 96, 3682

(2009).
[14] K. Sato, M. Ohtaki, Y. Shimamoto, and S. Ishiwata, Prog.

Biophys. Molec. Biol. 105, 199 (2011).
[15] S. Ishiwata and F. Oosawa, J. Mechanochem. Cell Motil.

3, 9 (1974).
[16] K. Tawada andK. Sekimoto, J. Theor. Biol. 150, 193 (1991).
[17] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.111.108104 for the
forces generated by cross bridges (Text 1), experimental
conditions (Text 2), the units of parameters (Table 1), and
movies.

[18] B.M. Millman, Physiol. Rev. 78, 359 (1998).
[19] P. C. Bressloff and S. Coombes, Phys. Rev. Lett. 80, 4815

(1998).
[20] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
[21] Y. Kuramoto, Chemical Oscillations, Waves, and

Turbulence (Springer, Berlin, 1984).
[22] B. Ermentrout, Neural Comput. 8, 979 (1996).
[23] We have also noted that the disrupted traveling wave

reflects characteristic properties of A and B and their
balance. The detailed study will be presented elsewhere.
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